
Extending MKM Formats at the Statement
Level

Fulya Horozal, Michael Kohlhase, and Florian Rabe

Computer Science, Jacobs University Bremen, Germany http://kwarc.info

Abstract. Successful representation and markup languages find a good
balance between giving the user freedom of expression, enforcing the
fundamental semantic invariants of the modeling framework, and al-
lowing machine support for the underlying semantic structures. MKM
formats maintain strong invariants while trying to be foundationally un-
constrained, which makes the induced design problem particularly chal-
lenging.
In this situation, it is standard practice to define a minimal core language
together with a scripting/macro facility for syntactic extensions that map
into the core language. In practice, such extension facilities are either
fully unconstrained (making invariants and machine support difficult)
or limited to the object level (keeping the statement and theory levels
fixed).
In this paper we develop a general methodology for extending MKM
representation formats at the statement level. We show the utility (and
indeed necessity) of statement-level extension by redesigning the OMDoc
format into a minimal, regular core language (strict OMDoc) and an
extension (pragmatic OMDoc) that maps into strict OMDoc.

1 Introduction

The development of representation languages for mathematical knowledge is one
of the central concerns of the MKM community. After all, practical mathemat-
ical knowledge management consists in the manipulation of expressions in such
languages. To be successful, MKM representation formats must balance multi-
ple concerns. A format should be expressive and flexible (for depth and ease
of modeling), foundationally unconstrained (for coverage), regular and minimal
(for ease of implementation), and modular and web-transparent (for scalability).
Finally, the format should be elegant, feel natural to mathematicians, and be
easy to read and write. Needless to say that this set of requirements is over-
constrained so that the design problem for MKM representation formats lies in
relaxing some of the constraints to achieve a global optimum.

In languages for formalized mathematics, it is standard practice to define a
minimal core language that is extended by macros, functions, or notations. For
example, Isabelle [Pau94] provides a rich language of notations, abbreviations,
syntax and printing translations, and a number of definitional forms. In narrative
formats for mathematics, for instance, the TEX/LATEX format – arguably the
most commonly used format for representing mathematical knowledge – goes a

http://kwarc.info

similar way, only that the core language is given by the TEX layout primitives
and the translation is realized by macro expansion and is fully under user control.
This extensibility led to the profusion of user-defined LATEX document classes
and packages that has made TEX/LATEX so successful.

However, the fully unconstrained nature of the extensibility makes ensur-
ing invariants and machine support very difficult, and thus this approach is not
immediately applicable to content markup formats. There, MathML3 [Aus+10]
is a good example of the state of the art. It specifies a core language called
“strict content MathML” that is equivalent to OpenMath [Bus+04b] and “full
content MathML”. The first subset uses a minimal set of elements representing
the meaning of a mathematical expression in a uniform, regular structure, while
the second one tries to strike a pragmatic balance between verbosity and for-
mality. The meaning of non-strict expressions is given by a fixed translation: the
“strict content MathML translation” specified in section 4.6 of the MathML3
recommendation [Aus+10].

This language design has the advantage that only a small, regular sublan-
guage has to be given a mathematical meaning, but a larger vocabulary that is
more intuitive to practitioners of the field can be used for actual representation.
Moreover, semantic services like validation only need to be implemented for the
strict subset and can be extended to the pragmatic language by translation.
Ultimately, a representation format might even have multiple pragmatic front-
ends geared towards different audiences. These are semantically interoperable
by construction.

The work reported in this paper comes from an ongoing language design
effort, where we want to redesign our OMDoc format [Koh06] into a minimal,
regular core language (strict OMDoc 2) and an extension layer (pragmatic OM-
Doc 2) whose semantics is given by a “pragmatic-to-strict” (P2S) translation.
While this problem is well-understood for mathematical objects, extension frame-
works at the statement level seem to be restricted to the non-semantic case, e.g.
the amsthm package for LATEX.

Languages for mathematics commonly permit a variety of pragmatic state-
ments, e.g., implicit or case-based definitions, type definitions, theorems, or
proof schemata. But representation frameworks for such languages do not in-
clude a generic mechanism that permits introducing arbitrary pragmatic state-
ments — instead, a fixed set is built into the format. Among logical frame-
works, Twelf/LF [PS99; HHP93] permits two statements: defined and undefined
constants. Isabelle [Pau94] and Coq [BC04] permit much larger, but still fixed
sets that include, for example, recursive case-based function definitions. Content
markup formats like OMDoc permit similar fixed sets.

A large set of statements is desirable in a representation format in order to
model the flexibility of individual languages. A large fixed set on the other hand
is unsatisfactory because it is difficult to give a theoretical justification for fixing
any specific set of statements. Moreover, it is often difficult to define the se-
mantics of a built-in statement in a foundationally unconstrained representation

format because many pragmatic statement are only meaningful under certain
foundational assumptions.

In this paper we present a general formalism for adding new pragmatic state-
ment forms to our OMDoc format; we have picked OMDoc for familiarity and
foundation-independence; any other foundational format can be extended simi-
larly. Consider for instance the pragmatic statement of an “implicit definition”,
which defines a mathematical object by describing it so accurately, that there
is only one object that fits this description. For instance, the exponential func-
tion exp is defined as the (unique) solution of the differential equation f = f ′

with f(0) = 1. This form of definition is extensively used in practical mathe-
matics, so pragmatic OMDoc should offer an infrastructure for it, whereas strict
OMDoc only offers “simple definitions” of the form c := d, where c is a new
symbol and d any object. In our extension framework, the P2S translation pro-
vides the semantics of the implicit definition in terms of the strict definition
exp := ιf.(f ′ = f ∧f(0) = 1), where ι is a “definite description operator”: Given
an expression A with free variable x, such that there is a unique x that makes
A valid, ιx.A returns that x, otherwise ιx.A is undefined.

Note that the semantics of an implicit definition requires a definite descrip-
tion operator. While most areas of mathematics at least implicitly assume its
existence, it should not be required in general because that would prevent the
representation of systems without one. Therefore, we make these requirements
explicit in a special theory that defines the new pragmatic statement and its
strict semantics. This theory must be imported in order for implicit definitions
to become available. Using our extension language, we can recover a large num-
ber of existing pragmatic statements as definable special cases, including many
existing ones of OMDoc. Thus, when representing formal languages in OMDoc,
authors have full control what pragmatic statements to permit and can define
new ones in terms of existing ones.

In the next section, we will recap those parts of OMDoc that are needed
in this paper. In Section 3, we define our extension language, and in Section 4,
we look at particular extensions that are motivated by mathematical practice.
Finally, in Section 5, we will address the question of extending the concrete
syntax with pragmatic features as well.

2 MMT/OMDoc

Theories

Statements

Objects D
o
cu

m
en

ts

OMDoc is a comprehensive content-based format for rep-
resenting mathematical knowledge and documents. It
represents mathematical knowledge at three levels: math-
ematical formulae at the object level, symbol declarations,
definitions, notation definitions, axioms, theorems, and
proofs at the statement level, and finally modular scopes
at the theory level. Moreover, it adds an infrastructure for representing func-
tional aspects of mathematical documents at the content markup level. OMDoc

1.2 has been successfully used as a representational basis in applications ranging
from theorem prover interfaces, via knowledge based up to eLearning systems.
To allow this diversity of applications, the format has acquired a large, inter-
connected set of language constructs motivated by coverage and user familiarity
(i.e., by pragmatic concerns) and not by minimality and orthogonality of lan-
guage primitives (strict concerns).

To reconcile these language design issues for OMDoc 2, we want to separate
the format into a strict core language and a pragmatic extension layer that is
elaborated into strict OMDoc via a “pragmatic-to-strict” (P2S) translation.

For strict OMDoc we employ the foundation-independent, syntactically min-
imal MMT framework (see below). For pragmatic OMDoc, we aim at a lan-
guage that is feature-complete with respect to OMDoc 1.2 [Koh06], but in-
corporates language features from other MKM formats, most notably from Is-
abelle/Isar [Wen99], PVS [ORS92], and Mizar [TB85].

The MMT language was emerged from a complete redesign of the formal
core1 of OMDoc focusing on foundation-independence, scalability, modularity,
while maintaining coverage of formal systems. The MMT language is described
in [RK11] and implemented in [Rab08].

LF Isabelle

FOL HOL

Monoid Ring

Fig. 1. An MMT Theory Graph

MMT uses theories as a single primi-
tive to represent formal systems such as log-
ical frameworks, logics, or theories. These
form theory graphs such as the one on the
left, where single arrows → denote theory
translations and hooked arrows ↪→ denote
the meta-theory relation between two the-
ories. The theory FOL for first-order logic
is the meta-theory for Monoid and Ring .
And the theory LF for the logical frame-
work LF [HHP93] is the meta-theory of FOL

and HOL for higher-order logic. In general, we describe the theories with meta-
theory M as M-theories. The importance of meta-theories in MMT is that the
syntax and semantics of M induces the syntax and semantics of all M -theories.
For example, if the syntax and semantics are fixed for LF , they determine those
of FOL and Monoid .

At the statement level, MMT uses constant declarations as a single primi-
tive to represent all OMDoc statement declarations. These are differentiated by
the type system of the respective meta-theory. In particular, the Curry-Howard
correspondence is used to represent axioms and theorems as plain constants
(with special types).

In Figure 2, we show a small fragment of the MMT grammar that we need
in the remainder of this paper. Meta-symbols of the BNF format are given in
color.

1 We are currently working on adding an informal (natural language) representation
and a non-trivial (strict) document level to MMT, their lack does not restrict the
results reported in this paper.

Modules G ::= (theory T = {Σ})∗
Theories Σ ::= · | Σ, c[: E][= E] | meta T
Contexts Γ ::= · | Γ, x[: E]
Expressions E ::= x | c | E E+ | E Γ.E

Fig. 2. MMT Grammar

The module level of MMT introduces theory declarations theory T = {Σ}.
Theories Σ contain constant declarations c[: E1][= E2] that introduce named
atomic expressions c with optional type E1 or definition E2. Moreover, each
theory may declare its meta-theory T via meta T .

MMT expressions are a fragment of OpenMath [Bus+04a] objects, for which
we introduce a short syntax. They are formed from variables x, constants c,
applications E E1 . . . En of functions E to a sequence of arguments Ei, and
bindings E1 Γ.E2 that use a binder E1, a context Γ of bound variables, and a
scope E2. Contexts Γ consist of variables x[: E] that can optionally attribute a
type E.

The semantics of MMT is given in terms of foundations for the upper-most
meta-theories. Foundations define in particular the typing relation between ex-
pressions, in which MMT is parametric. For example, the foundation for LF
induces the type-checking relation for all theories with meta-theory LF .

Example 1 (MMT-Theories). Below we give an MMT theory Propositions, which
will serve as the meta-theory of several logics introduced in this paper. It intro-
duces all symbols needed to declare logical connectives and inference rules of
a logic. The syntax and semantics of this theory are defined in terms of type
theory, e.g., the logical framework LF [HHP93].

type, →, and lam are untyped constants rep-
resenting the primitives of type theory. type
represents the universe of all types, → con-
structs function types α → β, and lam rep-
resents the λ-binder. o is the type of logical
formulas and proof is a constant that assigns
to each logical formula F : o the type proof F
of its proof.

theory Propositions = {
type

→
lam
o : type
proof : o→ type

}

3 A Framework for Language Extensions

We will now define our extension language (EL). It provides a syntactic means
to define pragmatic language features and their semantics in terms of strict
OMDoc.

Syntax EL adds two primitive declarations to MMT theories: extension declara-
tions and pragmatic declarations:

Σ::= Σ, extension e = Φ
| Σ, pragmatic c : ϕ

Extension declarations extension e = Φ introduce a new declaration schema
e that is described by Φ. Intuitively, Φ is a function that takes some arguments
and returns a list of declarations, which define the strict semantics of the decla-
ration scheme.

Pragmatic declarations pragmatic c : ϕ introduce new declarations that
make use of a previously declared extension. Intuitively, ϕ applies an extension
e a sequence of arguments and evaluates to the returned list of declarations.
Thus, c : ϕ serves as a pragmatic abbreviation of a list of strict declarations.

The key notion in both cases is that of theory families. They represent collec-
tions of theories by specifying their common syntactic shape. Intuitively, theory
families arise by putting a λ-calculus on top of theory fragments Σ:

Theory Families Φ ::= {Σ} | λx : E.Φ
ϕ ::= e | ΦE

We group theory families into two non-terminal symbols as shown above: Φ
is formed from theory fragments {Σ} and λ-abstraction λx : E.Φ. And ϕ is
formed from references to previously declared extension e and applications of
parametric theory families to arguments E. This has the advantage that both Φ
and ϕ have a very simple shape.

Example 2 (Extension Declarations). In Figure 3 we give the theory Assertion,
which declares extensions for axiom and theorem declarations. Their semantics
is defined in terms of the Curry-Howard representation of strict OMDoc.

Both extensions take a logical formula F : o as a parameter. The extension
axiom permits pragmatic declarations of the form c : axiom F . These abbreviate
MMT constant declarations of the form c : proof F .

The extension theorem additionally takes a parameter D : proof F , which
is a proof of F . It permits pragmatic declarations of the form c : theorem F D.
These abbreviate MMT constant declarations of the form c : proof F = D.

theory Assertion = {
meta Propositions
extension axiom = λF : o. {

c : proof F
}
extension theorem = λF : o. λD : proof F. {

c : proof F = D
}

}

Fig. 3. An MMT Theory with Extension Declarations

Any MMT theory may introduce extension declarations. However, pragmatic
declarations are only legal if the extension that is used has been declared in the
meta-theory:

Definition 1 (Legal Extension Declarations). We say that an extension
declaration extension e = λx1 : E1. . . . λxn : En. {Σ} is legal in an MMT
theory T , if the declarations x1 : E1, . . . , xn : En and Σ are well-formed in T .

This includes the case where Σ contains pragmatic declarations.

Definition 2 (Legal Pragmatic Declarations). We say that a pragmatic
declaration pragmatic c : eE1 . . . En is legal in an MMT theory T if there is a
declaration extension e = λx1 : E′

1. . . . λxn : E′
n. {Σ} in the meta-theory of T

and each Ei has type E′
i.

Here the typing relation is the one provided by the MMT foundation.

Semantics Extension declarations do not have a semantics as such because the
extension declared in M only govern what pragmatic declarations are legal in
M -theories. In particular, contrary to the constant declarations in M , a model
of M does not interpret the extension declarations.

The semantics of pragmatic declarations is given by elaborating them into
strict declarations:

Definition 3 (Pragmatic-to-Strict Translation P2S). A legal pragmatic
declaration pragmatic c : e E1 . . . En is translated to a list of strict constant
declarations

c.d1 : γ(F1) = γ(D1), . . . , c.dm : γ(Fm) = γ(Dm)

where γ substitutes every xi with Ei and every dj with c.dj if we have

extension e = λx1 : E′
1. . . . λxn : E′

n. {d1 : F1 = D1, . . . , dm : Fm = Dm}

and every expression Ei has type E′
i.

Example 3. Consider the following MMT theories in Figure 4: HOL includes the
MMT theory Propositions and declares a constant i as the type of individuals.
It adds the usual logical connectives and quantifiers – here we only present
truth (true) and the universal quantifier (∀) – and introduces equality (

.
=) on

expressions of type α. Then it includes Assertion. This gives HOL access to the
extensions axiom and theorem.

Commutativity uses HOL as its meta-theory and declares a constant ◦ that
takes two individuals as arguments and returns an individual. It adds a pragmatic
declaration named comm that declares the commutativity axiom for ◦ using the
axiom extension from HOL.

Commutativity ′ is obtained by elaborating Commutativity according to Def-
inition 3.

theory HOL = {
meta Propositions
i : type
true : o
...
∀ : (α→ o)→ o
.
= : α→ α→ o

include Assertion
}

theory Commutativity = {
meta HOL
◦ : i→ i→ i
pragmatic comm : axiom ∀x : i.∀y : i. x ◦ y .

= y ◦ x
}

theory Commutativity ′ = {
meta HOL
◦ : i→ i→ i
comm.c : proof ∀x : i.∀y : i. x ◦ y .

= y ◦ x
}

Fig. 4. A P2S Translation Example

4 Representing Extension Principles

Formal mathematical developments can be classified based on whether they fol-
low the axiomatic or the definitional method. The former is common for logics
where theories declare primitive constants and axioms. The latter is common for
foundations of mathematics where a fixed theory (the foundation) is extended
only by defined constants and theorems. In MMT, both the logic and the foun-
dation are represented as a meta-theory M , and the main difference is that the
definitional method does not permit undefined constants in M -theories.

However, this treatment does not capture conservative extension principles:
These are meta-theorems that establish that certain extensions are acceptable
even if they are not definitional. We can understand them as intermediates be-
tween axiomatic and definitional extensions: They may be axiomatic but are
essentially as safe as definitional ones.

To make this argument precise, we use the following definition:

Definition 4. We call the theory family Φ = λx1 : E′
1. . . . λxn : E′

n. {Σ} con-
servative for M if for every M -theory T and all E1 : E′

1, . . . , En : E′
n, every

model of T can be extended to a model of T, γ(Σ), where γ substitutes every xi
with Ei.

An extension declaration extension e = Φ is called derived if all constant
declarations in Σ have a definiens; otherwise, it is called primitive.

Primitive extension declarations correspond to axiom declarations because
they postulate that certain extensions of M are legal. The proof that they are
indeed conservative is a meta-argument that must be carried out as a part of the
proof that M is an adequate MMT representation of the represented formalism.
Similarly, derived extension declarations correspond to theorem declarations be-
cause their conservativity follows from that of the primitive ones. More precisely:
If all primitive extension principles in M are conservative, then so are all derived
ones.

In the following, we will recover built-in extension statements of common rep-
resentation formats as special cases of our extension declarations. We will follow
a little foundations paradigm and state every extensions in the smallest theory
in which it is meaningful. Using the MMT module system, this permits maxi-
mizal reuse of extension definitions. Moreover, it documents the (often implicit)
foundational assumptions of each extension.

Implicit Definitions in OMDoc Implicit definitions of OMDoc 1.2 are captured
using the following derived extension declaration. If the theory ImplicitDefinitions
in Figure 5 is included into a meta-theory M , then M -theories may use implicit
definitions.

theory ImplicitDefinitions = {
meta Propositions

∃! : (α→ o)→ o
ι : (α→ o)→ α

ιax : proof ∃!xP x→ proof P (ι P)

extension impldef = λα : type. λP : α→ o. λm : proof ∃!x : α. P x. {
c : α = ι P

cax : proof ∃!x : α. P x
}

}

Fig. 5. An Extension for Implicit Definitions

Note that ImplicitDefinitions requires two other connectives: A description
operator (ι) and a unique existential (∃!) are needed to express the meaning of
an implicit definition. We deliberately assume only those two operators in order
to maximize the re-usability of this theory: Using the MMT module system,
any logic M in which these two operators are definable can import the theory
ImplicitDefinitions.

More specifically, ImplicitDefinitions introduces the definite description op-
erator as a new binding operator (ι), and describes its meaning by the axiom
∃!xP (x) ⇒ P (ι P) formulated in ιax for any predicate P on α. The extension
impldef permits pragmatic declarations of the form f : impldef αP m, which
defines f as the unique object which makes the property P valid. This leads to
the well-defined condition that there is indeed such a unique object, which is
discharged by the proof m. The pragmatic-to-strict translation from Section 3
translates the pragmatic declaration f : impldef αP m to the strict constant
declarations f.c : α = ι P and f.cax : proof ∃!x : αP x.

Mizar-Style Functor Definitions The Mizar language [TB85] provides a wide
(but fixed) variety of special statements, most of which can be understood as
conservative extension principles for first-order logic. A comprehensive list of
the corresponding extension declarations can be found in [IKR11]. We will only
consider one example in Figure 6.

theory FunctorDefinitions = {
meta Propositions
∧ : o→ o→ o
⇒ : o→ o→ o
∀ : (α→ o)→ α
∃ : (α→ o)→ α
.
= : α→ α→ o
extension functor = λα : type. λβ : type. λmeans : α→ β → o.

λexistence : proof ∀x : α.∃y : β.means x y.
λuniqueness : proof ∀x : α.∀y : β. ∀y′ : β.

means x y ∧means x y′ ⇒ y
.
= y′.

f : α→ β
definitional theorem : proof ∀x : α.means x (f x)

}
}

Fig. 6. An Extension for Mizar-Style Functor Definitions

The theory FunctorDefinitions describes Mizar-style implicit definition of a
unary function symbol (called a functor in Mizar). This is different from the one
above because it uses a primitive extension declaration that is well-known to be
conservative. In Mizar, the axiom definitional theorem is called the definitional
theorem induced by the implicit definition. Using the extension functor , one can
introduce pragmatic declarations of the form pragmatic c : functor AB P E U
that declare functors c from A to B that are defined by the property P where
E and U discharge the induced proof obligations.

Flexary Extensions The above two examples become substantially more powerful
if they are extended to implicit definitions of functions of arbitrary arity. This
is supported by our extension language by using an LF-based logical framework
with term sequences and type sequences. We omit the formal details of this
framework here for simplicity and refer to [Hor12] instead. We only give one
example in Figure 7 that demonstrates the potential.

theory CaseBasedDefinitions = {
meta Propositions
∧ : on → o

∨! : on → o
⇒ : o→ o→ o
∀ : (α→ o)→ o
extension casedef = λn : N. λα : type. λβ : type. λc : (α→ o)n.

λd : (α→ β)n. λρ : proof ∀x : α. ∨!
[
ci x

]n
i=1

. {
f : α→ β

ax : proof ∀x : α. ∧
[
ci x ⇒ (f x) = (di x)

]n
i=1

}
}

Fig. 7. An Extension for Case-Based Definitions

The theory CaseBasedDefinitions introduces an extension that describes the
case-based definition of a unary function f from α to β that is defined using n
different cases where each case is guarded by the predicate ci together with the
respective definiens di. Such a definition is well-defined if for all x ∈ α exactly
one out of the ci x is true. Note that these declarations use a special sequence
constructor: for example,

[
ci x
]n
i=1

simplifies to the sequence c1 x , . . . , cn x. More-

over, ∧ and ∨! are flexary connectives, i.e., they take a flexible number of argu-
ments. In particular, ∨!(F1, . . . , Fn) holds if exactly one of its arguments holds.

The pragmatic declaration pragmatic f : casedef nαβ c1 . . . cn d1 . . . dn ρ
corresponds to the following function definition:

f(x) =

d1(x) if c1(x)
...

...
dn(x) if cn(x)

HOL-Style Type Definitions Due to the presence of λ-abstraction and a descrip-
tion operator in HOL [Chu40], a lot of common extension principles become
derivable in HOL, in particular, implicit definitions.

But there is one primitive definition principle that is commonly accepted
in HOL-based formalizations of the definitional method: A Gordon/HOL type
definition [Gor88] introduces a new type that is axiomatized to be isomorphic to
a subtype of an existing type. This cannot be expressed as a derivable extension
because HOL does not use subtyping.

theory Types = {
meta Propositions
∀ : (α→ o)→ o
∃ : (α→ o)→ o
.
= : (α→ α)→ o
extension typedef = λα : type. λA : α→ o. λP : proof ∃x : α.Ax. {

T : type
Rep : T → α
Abs : α→ T
Rep′ : proof ∀x : T.A (Rep x)
Rep inverse : proof ∀x : T.Abs (Rep x)

.
= x

Abs inverse : proof ∀x : α.Ax⇒ Rep (Abs x)
.
= x

}
}

Fig. 8. An Extension for HOL-Style Type Definitions

The theory Types in Figure 8, formalizes this extension principle. Our sym-
bol names follow the implementation of this definition principle in Isabelle/HOL
[NPW02]. Pragmatic declarations of the form pragmatic t : typedef αAP in-
troduce a new non-empty type t isomorphic to the predicate A over α. Since all
HOL-types must be non-empty, a proof P of the non-emptiness of A must be

supplied. More precisely, it is translated to the following strict constant decla-
rations:

– t.T : type is the new type that is being defined,

– t.Rep : t.T → α is an injection from the new type t.T to α,

– t.Abs : α→ t.T is the inverse of t.Rep from α to the new type t.T ,

– t.Rep′ states that the property A holds for any term of type t.T ,

– t.Rep inverse states that the injection of any element of type t.T to α and
back is equal to itself,

– t.Abs inverse states that if an element satisfies A, then injecting it to t.T
and back is equal to itself.

HOL-based proof assistants implement the type definition principle as a built-
in statement. They also often provide further built-in statements for other defi-
nition principles that become derivable in the presence of type definitions, e.g.,
a definition principle for record types. For example, in Isabelle/HOL [NPW02],
HOL is formalized in the Pure logic underlying the logical framework Isabelle
[Pau94]. But because the type definition principle is not expressible in Pure, it is
implemented as a primitive Isabelle feature that is only active in Isabelle/HOL.

5 Syntax Extensions and Surface Languages

Our definitions from Section 3 permit pragmatic abstract syntax, which is elab-
orated into strict abstract syntax. For human-oriented representations, it is de-
sirable to complement this with similar extensions of pragmatic concrete syntax.
While the pragmatic-to-strict translation at the abstract syntax level is usually
non-trivial and therefore not invertible, the corresponding translation at the
concrete syntax level should be compositional and bidirectional.

5.1 OMDoc Concrete Syntax for EL Declarations

First we extend OMDoc with concrete syntax that exactly mirrors the abstract
syntax from Section 3. The declaration extension e = λx1 : E1. . . . λxn :
En. {Σ} is written as

<extension name=”e”>

<parameter name=”x1”> E1 </parameter>
...

<parameter name=”xn”> En </parameter>

<theory>

Σ
</theory>

</extension>

Here we use the box notation A to gloss the XML representation of an entity
A given in abstract syntax.

Similarly, the pragmatic declaration pragmatic c : eE1 . . . En is written as

<pragmatic name=”c” extension=”〈〈M〉〉?e”>
E1 . . . En

</pragmatic>

Here 〈〈M〉〉 is the meta-theory in which e is declared so that 〈〈M〉〉?e is the MMT
URI of the extension.

Example 4. For the implicit definitions discussed in Section 3, we use the ex-
tension impldef from Figure 5, which we assume has namespace URI 〈〈U〉〉. If ρ
is a proof of unique existence for an f such that f ′ = f ∧ f(0) = 1, then the
exponential function is defined in XML by

<pragmatic name=”exp” extension=”〈〈U〉〉?ImplicitDefinitions?impldef ”>

λf.f ′ = f ∧ f(0) = 1 ρ

</pragmatic>

5.2 Pragmatic Surface Syntax

OMDoc is mainly a machine-oriented interoperability format, which is not in-
tended for human consumption. Therefore, the EL-isomorphic syntax introduced
is sufficient in principle – at least for the formal subset of OMDoc we have dis-
cussed so far.

OMDoc is largely written in the form of “surface languages” – domain-specific
languages that can be written effectively and transformed to OMDoc in an au-
tomated process. For the formal subset of OMDoc, we use a MMT-inspired
superset of the Twelf/LF [PS99; HHP93] syntax, and for informal OMDoc we
use STEX [Koh08], a semantic extension of TEX/LATEX.

For many purposes like learning the surface language or styling OMDoc doc-
uments, pragmatic surface syntax, i.e., a surface syntax that is closer to the
notational conventions of the respective domain, has great practical advantages.
It is possible to support, i.e., generate and parse, pragmatic surface syntax by
using the macro/scripting framework associated with most representation for-
mats.

For instance, we can regain the XML syntax familiar from OMDoc 1.2 via
notation definitions that transform between pragmatic elements and the corre-
sponding OMDoc 1.2 syntax. For Twelf/LF, we would extend the module system
preprocessor, and for Isabelle we would extend the SML-based syntax/parsing
subsystem. We have also extended STEX as an example of a semi-formal surface
language. Here we used the macro facility of TEX as the computational engine.
We conjecture that most practical surface languages for MKM can be extended
similarly.

These translations proceed in two step. Firstly, pragmatic surface syntax is
translated into our pragmatic MMT syntax. Our language is designed to make
this step trivial: in particular, it does not have to look into the parameters
used in a pragmatic surface declaration. Secondly, pragmatic MMT syntax is
type-checked and, if desired, translated into strict MMT syntax. All potentially
difficult semantic analysis is part of this second step. This design makes it very
easy for users to introduce their own pragmatic surface syntax.

6 Conclusion & Future Work

In this paper, we proposed a general statement-level extension mechanism for
MKM formats powered by the notion of theory families. Starting with MMT as
a core language, we are able to express most of the pragmatic language features
of OMDoc 1.2 as instances of our new extension primitive. Moreover, we can
recover extension principles employed in languages for formalized mathematics
including the statements employed for conservative extensions in Isabelle/HOL
and Mizar. We have also described a principle how to introduce corresponding
pragmatic concrete syntax.

The elegance and utility of the extension language is enhanced by the modu-
larity of the OMDoc 2 framework, whose meta-theories provide the natural place
to declare extensions: the scoping rules of the MMT module system supply the
justification and intended visibility of statement-level extensions. In our exam-
ples, the Isabelle/HOL and Mizar extensions come from their meta-logics, which
are formalized in MMT.

We also expect our pragmatic syntax to be beneficial in system integration
because it permit interchanging documents at the pragmatic MMT level. For
example, we can translate implicit definitions of one system to those of another
system even if – as is typical – the respective strict implementations are very
different.

For full coverage of OMDoc 1.2, we still need to capture abstract data types
and proofs; the difficulties in this endeavor lie not in the extension framework
but in the design of suitable meta-logics that justify them. For OMDoc-style
proofs, the λµµ̃-calculus has been identified as suitable [ASC06], but remains to
be encoded in MMT. For abstract data types we need a λ-calculus that can reflect
signatures into (inductive) data types; the third author is currently working on
this.

The fact that pragmatic extensions are declared in meta-theories points to-
wards the idea that OMDoc metadata and the corresponding metadata ontolo-
gies [LK09] are actually meta-theories as well (albeit at a somewhat different
level); we plan to work out this correspondence for OMDoc 2.

Finally, we observe that we can go even further and interpret the feature of
definitions that is primitive in MMT as pragmatic extensions of an even more
foundational system. Then definitions c : E = E′ become pragmatic notations
for a declaration c : E and an axiom c = E′, where = is an extension symbol
introduced in a meta-theory for equality. Typing can be handled similarly. This

would also permit introducing other modifiers in declarations such as <: for
subtype declarations.

References

[ASC06] Serge Autexier and Claudio Sacerdoti Coen. “A Formal Corre-
spondence Between OMDoc with Alternative Proofs and the λµµ̃-
calculus”. In: Mathematical Knowledge Management (MKM). Ed.
by Jon Borwein and William M. Farmer. LNAI 4108. Springer Ver-
lag, 2006, pp. 67–81.

[Aus+10] Ron Ausbrooks et al. Mathematical Markup Language (MathML)
Version 3.0. W3C Recommendation. World Wide Web Consortium
(W3C), 2010. url: http://www.w3.org/TR/MathML3.

[BC04] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Con-
structions. Springer, 2004.

[Bus+04a] S. Buswell et al. The Open Math Standard, Version 2.0. Tech. rep.
See http://www.openmath.org/standard/om20. The Open Math
Society, 2004.

[Bus+04b] Stephen Buswell et al. The Open Math Standard, Version 2.0. Tech.
rep. The OpenMath Society, 2004. url: http://www.openmath.
org/standard/om20.

[Chu40] A. Church. “A Formulation of the Simple Theory of Types”. In:
Journal of Symbolic Logic 5.1 (1940), pp. 56–68.

[Gor88] M. Gordon. “HOL: A Proof Generating System for Higher-Order
Logic”. In: VLSI Specification, Verification and Synthesis. Ed. by
G. Birtwistle and P. Subrahmanyam. Kluwer-Academic Publishers,
1988, pp. 73–128.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining
logics”. In: Journal of the Association for Computing Machinery
40.1 (1993), pp. 143–184.

[Hor12] F. Horozal. “Logic Translations with Declaration Patterns”. https:
//svn.kwarc.info/repos/fhorozal/pubs/patterns.pdf. 2012.

[IKR11] M. Iancu, M. Kohlhase, and F. Rabe. Translating the Mizar Math-
ematical Library into OMDoc format. Tech. rep. KWARC Report-
01/11. Jacobs University Bremen, 2011.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug.
2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”.
In: Mathematics in Computer Science 2.2 (2008), pp. 279–304. url:
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf.

[LK09] Christoph Lange and Michael Kohlhase. “A Mathematical Ap-
proach to Ontology Authoring and Documentation”. In: MKM/-
Calculemus Proceedings. Ed. by Jacques Carette et al. LNAI 5625.
Springer Verlag, July 2009, pp. 389–404. isbn: 978-3-642-02613-3.

http://www.w3.org/TR/MathML3
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
https://svn.kwarc.info/repos/fhorozal/pubs/patterns.pdf
https://svn.kwarc.info/repos/fhorozal/pubs/patterns.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf

url: http://kwarc.info/kohlhase/papers/mkm09-omdoc4onto.
pdf.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002.

[ORS92] S. Owre, J. Rushby, and N. Shankar. “PVS: A Prototype Verifi-
cation System”. In: 11th International Conference on Automated
Deduction (CADE). Ed. by D. Kapur. Springer, 1992, pp. 748–752.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover. Vol. 828. Lecture
Notes in Computer Science. Springer, 1994.

[PS99] F. Pfenning and C. Schürmann. “System Description: Twelf - A
Meta-Logical Framework for Deductive Systems”. In: Lecture Notes
in Computer Science 1632 (1999), pp. 202–206.

[Rab08] F. Rabe. The MMT System. see https://trac.kwarc.info/MMT/.
2008.

[RK11] F. Rabe and M. Kohlhase. “A Scalable Module System”. see http:

//arxiv.org/abs/1105.0548. 2011.
[TB85] A. Trybulec and H. Blair. “Computer Assisted Reasoning with

MIZAR”. In: Proceedings of the 9th International Joint Conference
on Artificial Intelligence. Ed. by A. Joshi. 1985, pp. 26–28.

[Wen99] M. Wenzel. “Isar - A Generic Interpretative Approach to Readable
Formal Proof Documents”. In: Theorem Proving in Higher Order
Logics. Ed. by Y. Bertot et al. Vol. 1690. Springer, 1999, pp. 167–
184.

http://kwarc.info/kohlhase/papers/mkm09-omdoc4onto.pdf
http://kwarc.info/kohlhase/papers/mkm09-omdoc4onto.pdf
https://trac.kwarc.info/MMT/
http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548

	1 Introduction
	2 MMT/OMDoc
	3 A Framework for Language Extensions
	4 Representing Extension Principles
	5 Syntax Extensions and Surface Languages
	5.1 OMDoc Concrete Syntax for EL Declarations
	5.2 Pragmatic Surface Syntax

	6 Conclusion & Future Work

