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LF has been designed as a meta-logical framework to represent logics, and has become a standard
tool for studying properties of logics. Building on the newly introduced module system for LF, we
present the nucleus of an integrated and structured development of the syntax, semantics, and proof
theory of logics, and of the relations between those logics. The methodology is chosen so that it will
scale to an atlas for the zoo of logics currently used in reasoning systems, and the modular nature of
this development aids the practical integration of systems because shared features of the logics are
reused directly. Finally we show how these encodings in LF are imported into the Hets system, which
provides automated proof support on the modular level and integrates various automated theorem
provers for the represented object logics.

1 Introduction

Logics allow making mathematical knowledge accessible to computational systems like (semi-)automated
theorem provers, model checkers, computer algebra systems, constraint solvers, or concept classifiers.
Unfortunately, these systems have differing foundational assumptions and input languages, which makes
them non-interoperable and difficult to compare and evaluate in practice. To remedy this situation, we
need a foundationally unconstrained framework for knowledge representation that allows to represent
the meta-theoretic foundations of the mathematical knowledge in the same format and to interlink the
foundations at the meta-logical level.

Parts of the necessary framework have been developed under the heading of “logical frameworks”.
For instance LF has been used extensively to represent logics [HHP93, PSK+03, AHMP98], many of
them included in the Twelf distribution [PS99]. Logic representations in Isabelle [Pau94] are notable
for the size of the libraries in the encoded logics, especially for HOL [NPW02]. Various logics were
represented in Coq [BC04] and Agda [Nor05]. Zermelo-Fraenkel and related set theories were encoded
in a number of systems, see, e.g., [PC93] or [TB85]. Other systems employed to encode logics include
[BC04], [Nor05], and [CAB+86].

But simply representing logics in a logical framework is not enough. For establishing interoperability
between systems that use different logics, we need logic translations, which are much more sporadic and
usually still carried out in an ad hoc manner, i.e. not using a framework that explicitly supports trans-
lations. Important logic translations represented using the logic programming interpretation of Twelf
include cut elimination [Pfe00] and the HOL-Nurpl translation [SS04]. More systematic approaches
have been conducted in the model theoretical community (see, e.g., [GB92, Mes89, MML07]). How-
ever, here logical frameworks are understood as a theoretical foundation rooted in classical mathematics,
not as an implemented formal system. Recently several systems were developed that subsume LF and
provide special support for translations. Delphin [PS08] uses a functional programming language on top
of LF to translate between LF signatures using continuations for fresh parameters. Beluga [PD10] is
similar but explicitly represents contexts.
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In this paper, we report on work in the ongoing project LATIN (Logic Atlas and Integrator) which
aims to (i) use a “logics as theories/translations as morphisms” approach to achieve to interoperability
of both system behavior and represented knowledge (the Logic Integrator), and to (ii) obtain a com-
prehensive and interconnected network of formalizations of logics of computational logic systems (the
Logic Atlas). In LATIN, we largely abstract from the surface syntax of logical systems and focus on
the role of modular developments of logic representations to structure the Logic Atlas and re-use shared
components of logics. In [RS09], we gave a module system for LF based on signature morphisms that
we (designed for and) use as the base of our Atlas. This system is really without much competition, as
use of modularity to represent inheritance between logics is not well-studied in logical frameworks. An
exception are the encodings of modal logics in Isabelle in [BMV98], but this approach is not elevated to
a general framework for modularity.

One of the main goals of LATIN is to integrate both proof and model theoretical frameworks. While
this work focuses on the former with LF and Twelf as our preferred framework, we briefly discuss the
model theoretical aspects, for which we employ the Hets system, which is also part of the LATIN project.

This paper is organized as follows. We give an introduction to LF and to its module system in Sect. 2.
In Sect. 3, we present the current developments in the Logic Atlas with examples and discuss knowledge
management aspects of its underlying infrastructure. In Sect. 4, we describe the Hets system and its
integration with Twelf.

2 LF and its Module System

LF [HHP93] is a dependent type theory related to Martin-Löf type theory [ML74]. It is the corner of
the λ -cube [Bar92] (see Sect. 3.2) that extends simple type theory with dependent function types. We
will work with the Twelf implementation of LF [PS99] using the Twelf module system [RS09]. We will
briefly revisit the relevant notions and syntax. We refer to [HHP93], [PS99], and [HST94] for details on
LF, Twelf, and LF signature morphisms and to [RS09] for the Twelf module system.

LF and Twelf LF expressions E are grouped into kinds K, kinded type-families A : K, and typed terms
t : A. We will always use Twelf notation for expressions. Then the kinds are the base kind type and
the dependent function kinds {x : A}K. The type families are the constants a, applications a t, and the
dependent function type {x : A}B; type families of kind type are called types. The terms are constants
c, applications t t ′, and abstractions [x : A] t.

We write A→ B instead of {x : A}B if x does not occur in B, and we will omit the types of bound
variables if they can be inferred. Upper case free variables are implicitly bound on the outside of the
expression (implicit arguments).

Finally, an LF signature Σ is a list of kinded type family declarations a : K and typed constant
declarations c : A. Both may carry definitions, i.e., c : A = t and a : K = A, respectively.

Syntax of the Module System The module system for LF and Twelf is based on the notion of sig-
nature morphisms: Given two signatures Σ and Σ′, an LF signature morphism σ : Σ→ Σ′ is a type-
and kind-preserving map of Σ-symbols to Σ′-expressions. Thus, σ maps every constant c : A of Σ to
a term σ(c) : σ(A) and every type family symbol a : K to a type family σ(a) : σ(K). Here, σ is the
homomorphic extension of σ to Σ-expressions, and we will write σ instead of σ from now on. Signature
morphisms preserve typing, i.e., if `Σ E : E ′, then `Σ′ σ(E) : σ(E ′), and correspondingly for equality.
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The module level declarations consist of named signatures R,S,T and three kinds of signature mor-
phism declarations: views v, structures r,s, and inclusions. The following grammar yields the modular
signatures where terms, type families, and kinds are merged into expressions E and constants c may be
typed or kinded. The module level declarations are explained below.

Sign. Graph G ::= · | G, %sig T = {Σ} |%view v : S → T = {σ}
Signatures Σ ::= · | Σ, %include S | Σ, %struct s : S = {σ} | Σ, c : E | Σ, c : E = E
Morphisms σ ::= · | σ , %include µ | σ , %struct s := µ | σ , c := E
Expressions E ::= type | c | x | E E | [x : E]E | {x : E}E | E→ E
Composites µ ::= · | T.s µ | v µ

A view v from signature S to signature T is a signature morphism that represents a translation or a
refinement. We can also think of S as a specification, of T as a semantic realm, e.g., higher-order logic
represented in LF, and of v as an implementation or model of S in terms of T .

Structures and inclusions declare signature morphisms into the containing signature, they represent
an import or inheritance relationships. A structure %struct s : S = {σ} declared in signature T
imports and translates all declarations of S into T . s is used to form qualified names s.c for the imported
constants c of S. Contrary to views, σ is usually not total: If σ is defined, i.e., if S declares c : E and σ

contains c := E ′, the induced constant is s.c : T.s(E) = E ′. Here T.s : S→ T is the signature morphisms
mapping every c of S to s.c. Thus, structures represent the instantiation of parametric signatures.

Inclusions %include S declared in T are similar to structures but the induced signature morphism
from S to T is always an inclusion. Consequently, include declarations are unnamed and may not carry
instantiations. The included symbols c of S are available as S.c in T .

Finally, we can form composed morphisms µ as lists of structures and views. For example, if v is
a view from R to S and T declares a structure s of type S, then v T.s is a morphism from R to T . If R
includes R′, then v T.s is also a morphism from R′ to T .

Naturally, multiple inclusions of the same signature are redundant. But because structures are named,
a signature may have multiple structures of the same signature, which are all distinct. For example, if a
signature S contains a structure %struct r : R = {ρ}, and T contains structures %struct r′ : R = {ρ ′}
and %struct s : S = {σ}, then T has the two structures r′ and s.r of S. Structure sharing is possible
because morphisms may instantiate whole structures at once: If σ contains %struct r := T.r′, the two
structures r′ and s.r are shared.

R

S

T
σ

µ
Structure sharing is a special case of modular morphisms. In general, a mor-

phism σ occurring in a view or structure from S to T , may be given by mirroring the
modular structure of S. Firstly, assume that S includes a signature R. Then σ in a view
or structure from S to T must map all constants of S, i.e., also those included from
R. But often a morphism µ from R to T is already available. σ may reuse µ with
a declaration %include µ . The intended semantics is that the triangle on the right
always commutes. In general, S may include R in multiple ways, e.g., by including R1 and R2 both of
which include R (the diamond situation). If σ includes morphisms µi : Ri→ T for i = 1,2, then we have
to require that µ1 and µ2 agree on R to avoid inconsistencies.

R

S

TS.r
σ

µCorrespondingly, if S instantiates R via a structure %struct r : R = {ρ}, then
σ may contain a structure instantiation %struct r := µ . As above this leads to the
commutative diagram on the right. Again we also have to require that there are no con-
flicting declarations in ρ , σ , and µ . For example, if µ maps c to c1 and ρ instantiates
c with c2, then σ must map c2 to (an expression equal to) c1.
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Semantics and Implementation The semantics of modular LF is given in two ways. The official
semantics appeals directly to the modular structure. For every well-formed signature graph G we obtain
a graph G whose nodes are the signatures declared in G and whose edges are the views, structures, and
inclusions declared in G. The well-formed morphisms from S to T are given by the paths from S to T in
G, possibly inserting inclusion edges.

Secondly, the module system is conservative in the sense that every modular signature can be elab-
orated (flattened) into a non-modular signature. Each node T of G can be labelled with a non-modular
Twelf signature T , which contains exactly one declaration for each constant declared in or imported into
T . Similarly, each edge from S to T is labelled with non-modular signature morphism from S to T .

The main theorem is that all signatures and signature morphisms in G are well-formed with respect
to the semantics of non-modular LF iff G is well-formed as a modular LF signature graph. In particular,
all signature morphisms in G are well-formed so that all LF judgments are preserved when translating
expressions along the paths of G.

The module system has been implemented as an extension of Twelf and is available as the twelf-mod
branch of Twelf. The implementation can be succinctly described as computing G from G. The supported
syntax is a bit more general than described here: It permits nested signatures and treats the toplevel as a
signature itself. This has the effect that all legacy content remains well-formed.

3 Seeding the Logic Atlas

In this section, we give an insight into our Logic Atlas. Sect. 3.1 gives a birds-eye view of the Atlas. Then
we give some example formalizations that are representative in style for the whole graph in Sect. 3.2 and
Sect. 3.3. These illustrate modular representation of type-theories and logics, respectively. Our goal of a
logic atlas heavily depends on the scalability of the employed infrastructure. Therefore, we discuss some
knowledge management aspects that are particularly relevant to Twelf in Sect. 3.4.

3.1 Overview

One of the biggest challenges in creating and maintaining our Logic Atlas is how to organize the content.
We hold that the best conceptual model is that of a graph – more precisely a multi-graph – of mathemat-
ical theories and relations between them. Here we use the term “theory” for any mathematical context
that can be captured as a formal language and which includes for example arithmetic, lambda calculus,
or group theory. All of these are formalized as LF signatures. The edges of the graph are translations
between theories, which are represented as LF signature morphisms. They are typically split into inher-
itance translations, which hold by definition – inclusions and structures – and representation theorems,
which have to be proved – views.

Signature morphisms are a good choice as the representational primitive for such translations because
they are both simple and expressive, and enjoy a number of desirable properties such as being closed
under composition and having a decidable notion of validity. However, they are not the last word yet as
they can express only total and only compositional (also called structural or recursive) translations. This
excludes non-compositional translations such as cut-elimination and the bracket abstraction translation
from natural deduction to Hilbert calculi. We envision that eventually an extension of the module system
to the Twelf meta-theory (which is able to express these translations as logic programs) will reconcile
these two notions. But for now signature morphisms already get us a long way.

The next question then is how to map a multi-graph to the directory-based infrastructure of a storage
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system. Since the structure of the multi-graph reflects that of mathematics, any grouping of theories into
directories inevitably requires choices that would better be left open. However, the alternative of putting
all files in the same directory scales very badly. We envision that eventually all modules (rather than
files) will be stored individually in a database, and the distribution of modules over files and directories
will be flexible and customizable for each working copy of the main repository. We made the first step
into that direction using the virtual files of the TNTBase system [ZKR10], which we plan to extend to
the LF format in the future.

For now we use an SVN repository [KMR09] with a directory structure that roughly reflects the
division of research fields:
• type theories contains languages that use typing judgments on expressions,
• logics contains languages that have a notion of formulas and truth,
• set theories contains languages that are based on the ∈ relation between sets,
• math contains languages used in specific mathematical domain, usually based on a certain logic;

these are somewhat peripheral to our logic graph interest and serve mainly as case studies,
• category theory contains the language of categories seen as an alternative foundation of math-

ematics,
• translations contains the individual edges of the graph.
The type theories are based on a modular development of orthogonal features of λ -calculi including

the dimensions of the λ -cube, product types, union types, etc. Specific type theories are obtained by
including the needed modules. The formalizations of the sorted first- and higher-order logics are para-
metric in the underlying type theory; for example, traditional HOL is obtained by combining simple
function (and possibly product) types with Andrews-style logical symbols (i.e., with equality as the only
primitive symbol).

First-order, modal, and description logics are formed similarly from orthogonal modules for individ-
ual connectives, quantifiers, and axioms. For example, the classical ∧ connective is only declared once
in the whole Atlas, and the axiom of excluded middle and its consequences reside in a separate signature.
We also use individual modules for syntax, proof theory, model theory, and soundness proof so that the
same syntax can be combined with different interpretations.

To represent model theory, we use a formalization a Zermelo-Fraenkel set theory. Exploiting the
expressive strength of a dependently-typed meta-language, we can represent set theory using only ∈
and a (definite) description operator as the primitive operations, which is closer to textbook accounts
of mathematics than the formalizations in Isabelle/ZF and Mizar. Furthermore, we recover a typed
representation of untyped set theory, which permits LF-level typed reasoning, by declaring appropriate
abbreviations. This development is currently the largest in the Atlas at around 4000 lines of Twelf output
at default verbosity. It is strong enough to develop, e.g., dependent type theory within set theory. A
formalization of Mizar and Tarski-Grothendieck set theory is currently under way.

The highly modular structure of these theories already yields a large number of inheritance edges.
Additionally, the representation theorems that we have so far formalized as LF views include:
• the translation from unsorted to sorted first-order logic (which is almost but not quite an inclusion),
• the translations by relativization of quantifiers from sorted first-order, modal, and description logics

to unsorted first-order logic, in most cases including the translation of the model theory,
• the translation from propositional and sorted first-order logic to Andrews-style higher-order logic,
• the negative translation from classical to intuitionistic logic,
• the translation from type theory to set theory that interprets types as sets and terms as elements,

including a translation of Isabelle/HOL to ZF set theory,
• the Curry-Howard correspondence between logic, type theory, and category theory.
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All translations include translations of the proof theory, which guarantees their proof theoretical sound-
ness due to the type-preservation of signature morphisms.

3.2 Type Theories

λ→

λ2

λP

λP2

λω

λω

λPω

λPω
The λ -cube The λ -cube [Bar92] is a framework consisting of eight
different typed λ -calculi, each of which is defined uniformly by a
different combination of polymorphism, type operators and depen-
dent types. The framework represents systems from simply typed λ -
calculus [Chu36] to the calculus of constructions [CH88] as corners
of the cube shown on the right.

The systems λ→, λ2 and λP are simply typed λ -calculus, poly-
morphic (or second-order) λ -calculus as in [Gir71] and dependently
typed λ -calculus corresponding to LF, respectively. λω is a calculus
with type operators studied in [dL92], and λPω extends this with de-
pendent types/kinds. The system λP2 corresponds to LF with universal types studied in [LM88]. The
systems λω and λPω correspond to the system Fω in [Gir71] of Girard and to calculus of constructions,
respectively.

The framework is based on a set of general typing rules for λΠ-abstraction and application that are
parametric in the levels of the variable and its scope. Levels s range over the set {∗,�} where ∗ is the
universe of types and � the one of kinds. The systems are differentiated by the Π-introduction rule

Γ ` A : s1 Γ, x : A ` B : s2
(s1,s2)

Γ ` Πx : A.B : s2

which is present only for different pairs (s1,s2) of levels in each system: All systems have the rule (∗,∗)
for typed variables occurring in typed expressions, and the combinations of the remaining three rules
yield the eight corners of the cube.

Modular Encoding of the λ -cube in Twelf The encoding of the λ -cube in Twelf benefits from the
module system significantly. There are three main parts of the encoding: (i) the encoding of the levels
and judgments, (ii) the encoding of the individual features of the cube, and (iii) the combination of these
features to form the respective system.

(i) In λ→ and λ2, expressions are classified as terms and types, and in the remaining systems kinds are
used as well. We refer to them as two-levelled and three-levelled type theories, respectively. Expressions
of level n act as classifiers for expressions of level n−1. We represent such a classification relation with
the signature Level with declarations cl : type for classifiers and exp : cl→ type for the classifier-indexed
type family of classified expressions.

%sig KindsTypesTerms = {
%struct kinds : Level.
tp′ : kinds.cl.
%struct types : Level = {cl := kinds.exp tp′.}.
}.

In a two-levelled type theory, classifiers are
types and expressions are terms. Therefore,
the base signature for two-levelled type theories
simply imports Level once, and uses cl for types
and exp A for terms of type A. Similarly, the base
signature for three-levelled type theories imports
Level twice; it is given on the right. Firstly, on the kind-level, LF-terms of LF-type kind.cl represents
kinds, and LF-terms of LF-type kinds.exp K represent type families of kind K. The kind tp′ represents
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the universe of types. Secondly, on the type-level, LF-terms of LF-type types.cl, which is instantiated
with kinds.exp tp′, represent types, and LF-terms of LF-type types.exp A represent terms of type A.

%sig DepFun = {
%struct domain : Level.
%struct scope : Level.
Π : (domain.exp A→ scope.cl)→ scope.cl.
. . .
}.

(ii) We encode the (s1,s2)-rule in the signa-
ture DepFun on the right. We represent the para-
metricity of the (s1,s2)-rule by using two im-
ports of the signature Level into DepFun: The
LF-terms domain.cl and scope.cl represent s1
and s2, respectively. Then we can use LF’s
higher-order abstract syntax to represent the Π-
formation rule as a constant Π that binds a free variable of type or kind (depending on domain) A in a type
or kind (depending on scope). DepFun also contains the declarations for the corresponding λ -abstraction
and application.

%sig DepTypes = {
%include KindsTypesTerms.
%struct deptypes : DepFun = {

%struct domain := KindsTypesTerms.types.
%struct scope := KindsTypesTerms.types.
}.
}.

For example, the signature DepTypes in-
cludes KindsTypesTerms, i.e., is a three-levelled
type theory. We add the (∗,∗)-rule to it by im-
porting DepFun and instantiating both domain
and scope with the structure types included from
KindsTypesTerms. Similarly, we can obtain
the (�,∗)-rule (polymorphism) using an import
from DepFun which instantiates domain with
KindsTypesTerms.kinds and scope with KindsTypesTerms.terms.

(iii) We obtain each corner of the cube by combining the respective instances of DepFun. In particu-
lar, all four possible instances together yield the calculus of constructions.

In fact, our development is slightly more complicated. Some of the simpler systems cannot utilize
the expressivity of their respective (s1,s2)-rules. For example, λ→ has only the (∗,∗)-rule, and its types
Πx : A.B always degenerate into A→ B. To represent this, we use a signature SimpFun, which is like
DepFun but uses→ instead of Π, and give a view SimpToDep from SimpFun to DepFun.

Similarly, both function types and function kinds of λω are non-dependent. While λω as part of the
cube uses two instances of DepFun, we get the same well-formed expressions with a signature λω ′ that
uses two instances of SimpFun. We can give a view from λω ′ to λω by reusing the view SimpToDep
twice.

3.3 Logics

%sig λPHOL = {
%include λP.
%struct hol : HOL = {

%include SimpToDep.
}.
}.

We can use the λ -cube encoding in LF to obtain modular represen-
tations of higher-order logics based on different type theories. We
use a signature HOL which includes SimpFun and adds a type o : tp
for propositions and a truth judgment ded : tm o→ type. We can
then develop HOL in the usual way, and we have done that both for
Andrews’ and Isabelle/HOL’s choice of primitive operations.

Now, using the module system, we can reuse HOL by replacing
the underlying type theory. For example, the signature on the right develops HOL on top of λP. It
includes λP and then instantiates HOL. As HOL includes SimpFun, we use the view SimpToDep to
instantiate the underlying type theory of HOL with that of λP.

In general, one of the main goals in developing our Logic Atlas is to represent both proof and model
theory of logics. To represent model theory in LF we use the approach developed in [Rab08] and [HR10].
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Based on that approach, our encoding of a logic L in LF consists of three signatures: Lsyn for the syntax,
Lpf for the proof theory, and Lmod for the model theory as shown in the diagram on the right.

Lsyn

Lpf

Lmod

F

lmod

lpf
Lsyn contains declarations for all logical symbols, e.g., a type o of formulas

along with connectives and quantifiers. It also contains a truth judgment ded : o→
type. Lpf includes declarations for the judgments and inference rules of L. It is
typically an extension of Lsyn, i.e., lpf is an inclusion morphism. Previous logic
encodings in LF focused on giving Lsyn and Lpf .

Lmod contains declarations that describe models. Lmod typically includes a for-
malization F of the foundation of mathematics in which the models are defined,
e.g., set theory. Then a morphism lmod interprets Lsyn in Lmod. Here the inductive
definition of the extension of lmod to all Lsyn-expressions corresponds to the inductive definition of the
interpretation function induced by a model. In the simplest case lmod translates o to a type of truth values
and ded to a predicate that holds for the designated truth values.

%sig FOLmod = {
%include ZFC.
univ : set.
p : Elem (univ⇒ bool).
}.

For example, for first-order logic, FOLmod includes Zermelo-
Fraenkel set theory. ZFC introduces in particular a type set of sets,
a type family Elem : set → type for elements of a set, and a set
bool for the booleans. Then FOLmod adds a set for the universe
and constant declarations for the interpretation of the non-logical
symbols; in the example on the right, the latter the case of a single
unary predicate symbol p is given.

Then individual models are represented in LF as morphisms from FOLmod to ZFC that are the identity
on ZFC. In the example above, such a morphism must map univ to a set and p to a function from that
set to bool. Given such a morphism M, the composition lmod M yields the interpretation of FOLsyn in M.
This yields an adequate representation of models as LF signature morphisms. For example, we can now
establish the soundness of the semantics as a view from FOLpf to FOLmod; here the inductive structure
of a morphism corresponds to the inductive structure of the soundness proof.

3.4 Knowledge Management Aspects

Our Logic Atlas serves not only as a formalization of logics but also as a case study of how large scale
modular developments can be conducted. Since Twelf was never designed to scale to this scenario, our
work has raised a number of technical points about Twelf.

The central tool we employ for knowledge management is the OMDoc XML markup language and
our scalable infrastructure for it [Koh06]. Therefore, we have implemented a conversion from Twelf to
OMDoc within Twelf. In OMDoc, all non-trivial Twelf idiosyncrasies – e.g., operator fixities, implicit
arguments, type reconstruction – are transformed into standardized syntax. At the same these idiosyn-
crasies are preserved as notations so that human-readable Twelf can be generated from OMDoc. More-
over, the modular structure is fully preserved. This makes it possible to implement dedicated knowledge
management services without fearing to violate the Twelf semantics.

As a first application we have implemented a web server [KRZ10] that serves the logic graph as
cross-linked interactive files. It can be accessed via [KMR09]. It is currently in prototypical stage but
under constant development. It serves the LF modules in a way that lets users switch on off subexpres-
sions, inferred types, implicit arguments, or redundant brackets. In particular, it permits to jump to the
declaration of a symbol to look up type and definition. The latter is extremely valuable because almost
all people working on the logic graph need to import modules they did not author themselves and were
previously often puzzled when they had to determine the origin of a symbol.
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A second problem was the emacs mode for Twelf. While running the Twelf server as an emacs buffer
is an elegant design, it is rather slow and we rarely used the thus-provided interactivity. Therefore, we
implemented a Twelf mode for the jEdit text editor, which redirects Twelf’s output to a file. That ensued
in a speed-up of up to 20 for files that do not contain Twelf meta-theory as in our case. Thus, almost all
files type-check in less than a second or – if they require set theory – a few seconds. It can also produce
the OMDoc file, and we intend to develop this mode into an interactive Twelf editor by using the OMDoc
file to provide features such as cross-references directly in the editor.

Another aspect was the difficulty of using configuration (.cfg) files, which are used to provide the
names of Twelf (.elf) files that should be type-checked. Due to the high degree of modularity, auto-
mated validation of files, e.g., when committing to the repository, is indispensable for scalable change
management – especially with multiple people editing interconnected files. But it is not possible to vali-
date a Twelf file because dependencies are only recorded in the configuration files so that we had to use
a separate configuration file for almost every Twelf file.

As a more scalable, albeit temporary, solution, we implemented the pragma %read "FILE". to
load Twelf files from within Twelf files. Thus, every Twelf file explicitly imports its dependencies, and
configuration files are redundnat. The downside is that the distribution of resources over the file system
is not separated from the logical content. In the long run, we envision a package infrastructure for Twelf
in which top level names are pairs of a package name and a Twelf identifier. References to external
resources can then be made by qualified names and imports between packages, which are resolved by
an extra-linguistic catalog that maps package names to file names. In fact, this would even permit to
retrieve individual modules or aggregated collections of modules from a database. Using the architecture
described in [KRZ10], the server-side architecture for this is essentially in place, but we have deferred
the implementation of a client within Twelf because it would require a major revision of the Twelf code.

4 Integrating Twelf and Hets

4.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets, [MML07]) is a set of tools for multi-logic specifications, which
combines parsers, static analyzers, and theorem provers. It uses the abstract model theory notions of
institutions and institution comorphisms (see [GB92]) to represent logics and logic translations, respec-
tively. Currently supported logics include modal logic, propositional logic, the CASL family of first-
and higher-order logics [ABK+02, SM09], DFOL [Rab06], and OWL [AH03]. Some of the Hets logics
are connected to external provers – for instance SoftFOL [LM07], a version of first-order logic, is sup-
ported by SPASS [WBH+02] and Vampire [RV02] whereas the higher-order logic Isabelle is connected
to the semi-automated Isabelle prover [Pau94]. The proof systems in Hets have been utilized in several
large case studies, e.g., [WMS07] uses Hets for the heterogeneous verification of composition tables for
qualitative constraint calculi.

Hets provides a strong logic-independent support for structured specifications. Once a logic has been
implemented, the user can use Hets to specify modular theories and reason about them on the modular
level. The theoretical base of this is the concept of development graphs [MAH06]. A development graph
has as nodes the flattened theories of the modular specification and as edges definitional or theorem
links. These links intuitively correspond to the structures/inclusions and views of Twelf, respectively.
The graph is heterogeneous, i.e., the nodes can be from different logics and the edges can include logic
translations. Hets maintains the development graph, and users interact with the graph via a graphical
interface.

9



The main application of Hets is to postulate theorem links, which are then automatically proved
using the development graph calculus implemented in Hets. A postulated theorem link corresponds to
an incomplete view in the Twelf module system where the missing cases are to be inferred by Hets. The
calculus uses theory morphisms and logic translations to move proof obligations between theories and
logics, respectively, and eventually discharges them using dedicated external (semi-)automated theorem
provers. Translations are chosen automatically or by the user. Advanced reasoning features include
information hiding to support reasoning about data encapsulation and proving conservativity of theory
extensions.

Both Hets and LF are logical frameworks in the sense that they provide the theoretical and practical
infrastructure to define logics. Moreover, the Hets logic graph is very similar in spirit to the LATIN atlas.
However, there are two major differences. Firstly, Hets is based on model theory – the semantics of
implemented logics and the correctness of translations are determined by model theoretical arguments.
Proof theory is only used as a tool to discharge proof obligations and is not represented explicitly.

Secondly, the logics of Hets are specified on the meta-level rather than within the system itself.
Each logic or logic translation has to be specified by implementing a Haskell interface that is part of
the Hets code, and tools for parsing and static analysis have to be provided. Consequently, only Hets
developers but not users can add them. Besides the obvious disadvantage of the cost involved when
adding logics, this representation does not provide us with a way to reason about the logics or their
translations themselves. In particular, each logic’s static analysis is part of the trusted code base, and the
translations cannot be automatically verified for correctness.

4.2 Combining LF and Hets

The above-mentioned differences between the LF and Hets exhibit complementary strengths, and a major
goal of our work is to combine them. We envision a system in which LF is used as a component of Hets
to define logics dynamically. The user can use LF to define logics by specifying their syntax, proof
theory, and model theory as outlined in Sect. 3.3, and the combined system recognizes the new logics
and integrates them into the Hets logic graph.

As a first step towards the integration of the two frameworks we have implemented LF as a logic in
Hets. The implementation first specifies the LF signatures and signature morphisms; since axioms in LF
are represented as ordinary Twelf declarations, LF sentences are not used at this point and are omitted
in the logic implementation. The signature category then serves as a basis for the development graphs
generated from Twelf specifications.

Hets reads Twelf files directly and transparently forwards them to Twelf, which does parsing and
static analysis in order to benefit from type reconstruction and implicit arguments. If the file is correct,
Twelf outputs the OMDoc version of the file that is then imported into Hets using standard XML tech-
nologies. The information about implicit arguments, fixities etc., are stored as well so that Hets can
reproduce the original Twelf input syntax.

The subsequent analysis flattens all signatures and converts all morphisms to development graph
links: inclusions and structures become definitional links and views become theorem links in the Hets
development graph. Fig. 1 shows a screenshot of the Hets interface displaying the development graph
corresponding to the λ -cube encodings described in Sect. 3.2. The oval nodes correspond to signatures
defined in the current file. The square nodes represent signatures imported from other files, either as
the domain of a structure or inclusion or the domain or codomain of a view. Green arrows between
nodes correspond to theorem links, in our case views, and black arrows to definitional links, in our case
structures and inclusions.
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Figure 1: Hets Screenshot Displaying the λ -Cube

Currently LF views are always total, so that a successful Twelf type check proves that the instan-
tiations in all views are correct. Hence, there are no undischarged proof obligations and the theorem
links are already constructed as proved. In the future we intend to permit incomplete views, i.e., views
in which certain instantiations – typically the costly instantiations where proofs must be given – are
missing.

Then Hets can be used to find the missing proofs by identifying the open proof goals and forwarding
them to external theorem provers. All we need for that is to tell Hets which signatures of the Twelf
file form the triple (Lsyn,Lpf ,Lmod) from Sect. 3.3 so that Hets can determine which external provers are
applicable or which logic translations to use in order to find an applicable prover.

In the long run, we envision that these provers also return proof terms, which Hets can then fill
into the original file and rerun Twelf on it to validate the proof. Thus, Hets becomes the mediator that
orchestrates the interaction between external theorem provers and Twelf as a trusted proof checker.

5 Conclusion

The LATIN project can be seen as a continuation of the LogoSphere Project [Log06], which also had
interoperability of logic-based computational systems as its aim, and has developed some of the logical
framework foundations of the work reported here. But the work reported here concentrates more on
modularity, scalability, and re-use of granular logic components to achieve more coverage of logical
systems. Alternatively, LATIN can be viewed as a foundational part of the OMDoc project [OMD] that
aims to bring interoperability to systems by offering a web-scalable logic-transparent content markup
infrastructure to mathematics. We maintain that the strength our work is that it is both combining the
virtues of both approaches. Indeed we have used the OMDoc format to simplify the Hets integration by
getting around surface syntax issues. Note that this uses the XML-based OMDoc format how it should
be used: invisible to the user, but as a facilitator of system integration.

The main contribution of this paper is the systematic attempt to obtain a comprehensive and inter-
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connected network of logic formalizations, which we call the Logic Atlas. The Logic Atlas currently
consists of a around 150 files containing some 700 signatures and views and producing over 10000 lines
of Twelf output (including declarations that are generated by the module system). This is the result of
roughly one year of development with substantial contributions from six different people, and due to the
evolutionary improvement of our methodology, architecture, and expertise, growth has been exponential.
Nevertheless, the representation and interconnection of logics is (and will remain) a task that requires a
deep understanding of respective logics, a good eye for the underlying primitives, and sound judgment in
the design and layout of atlantes. We consider the current Logic Atlas to be a seed atlas that establishes
best practices in these questions and provides a nucleus of logical primitives that can be extended to add
particular logics by outside logic and system developers. We explicitly invite researchers outside the
LATIN project to contribute their logics. This should usually be a matter importing the aspects that are
provided by Logic Atlas theories, and LF-encoding the aspects that are not.
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des coupures dans l’analyse et la théorie des types. In J. Fenstad, editor, 2nd Scandinavian Logic
Symposium, pages 63–92. North-Holland, 1971.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association
for Computing Machinery, 40(1):143–184, 1993.

[HR10] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical Framework. Under
review, see http://kwarc.info/frabe/Research/EArabe_folsound_10.pdf, 2010.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representations. Annals
of Pure and Applied Logic, 67:113–160, 1994.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. See https://trac.omdoc.
org/LATIN/.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2). Number
4180 in Lecture Notes in Artificial Intelligence. Springer, 2006.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large: Modular Representation and
Scalable Software Architecture. submitted, 2010.

[LM88] Giuseppe Longo and Eugenio Moggi. Constructive natural deduction and its ‘modest’ interpreta-
tion. Technical Report CMU-CS-88-131, Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, 1988.
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[PSK+03] F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The Logosphere Project, 2003.
http://www.logosphere.org/.

[Rab06] F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and U. Furbach, editors, Proceedings
of the 3rd International Joint Conference on Automated Reasoning, volume 4130 of LNCS, pages
377–391. Springer, 2006.

[Rab08] F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen, 2008.
Available at http://kwarc.info/frabe/Research/phdthesis.pdf.
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