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Abstract. In this paper, we try to bridge the gap between different
dimensions/incarnations of mathematical knowledge: MKM representa-
tion formats (content), their human-oriented languages (source, presenta-
tion), their narrative linearizations (narration), and relational presenta-
tions used in the semantic web. The central idea is to transport solutions
from software engineering to MKM regarding the parallel interlinked
maintenance of the different incarnations. We show how the integration
of these incarnations can be utilized to enrich the authoring and viewing
processes, and we evaluate our infrastructure on the LATIN Logic Atlas,
a modular library of logic formalizations, and a set of computer science
lecture notes written in STEX – a modular, semantic variant of LATEX.

1 Introduction

The Mathematical Knowledge Management (MKM) community has developed
XML-based content representations of mathematical formulae and knowledge
that are optimized for machine-to-machine communication. They serve as archiv-
ing formats, make mathematical software systems and services interoperable and
allow to develop structural services like search, documentation, and navigation
that are independent of mathematical foundations and logics.

However, these formats are — by their nature — inappropriate for the com-
munication with humans. Therefore the MKM community uses languages that
are less verbose, more mnemonic, and often optimized for a specific domain for
authoring. Such human-oriented languages (we call them source languages) are
converted — via a complex compilation process — into the content represen-
tations for interaction with MKM services, ideally without the user ever seeing
them. In addition, we have designed presentation-oriented languages that permit
an enriched reading experience compared to the source language.

This situation is similar to software engineering, where programmers write
code, run the compiled executables, build HTML-based API documentations,
but expect, e.g., the documentation and the results of debugging services in
terms of the sources. In software engineering, scalable solutions for this problem
have been developed and applied successfully, which we want to transfer to
MKM.



The work described here originates from our work on two large collections
of mathematical documents: our LATIN logic atlas [KMR09] formalized in the
logical framework LF; and our General Computer Science lecture notes written
in LATEX. Despite their different flavor, both collections agree in some key as-
pects: They are large, highly structured, extensively inter-connected, and both
authoring and reading call for machine support.

Moreover, they must be frequently converted between representation dimen-
sions optimized for different purposes: a human-friendly input representation
(source), a machine-understandable content markup (content), interactive doc-
uments for an added-value reading experience (presentation-content parallel
markup), a linearized structure for teaching and publication (narration), and a
network of linked data items for integration with the semantic web (relational).

In Sect. 2, we first give an overview over these document collections focusing
on the challenges they present to knowledge management. Then we design a
knowledge representation methodology that integrates these different dimensions
in Sect. 3. In Sect. 4 and 5, we show how we leverage this methodology in
the authoring and the viewing process both of which benefit from a seamless
integration of the knowledge dimensions.

2 Structured Document Collections

2.1 The LATIN Logic Atlas

The LATIN Logic Atlas is a library of formalizations of logics and related for-
mal systems as well as translations between them. It is intended as a reference
and documentation platform for logics commonly used in mathematics and com-
puter science. It uses a foundationally unconstrained logical framework based on
modular LF and its Twelf implementation [HHP93; PS99; RS09] and focuses on
modularity and extensibility.

The knowledge in the Logic Atlas is organized as a graph of LF signatures
and signature morphisms between them. The latter are split into inheritance
translations (inclusions/imports) and representation theorems, which have to
be proved. It contains formalizations of type theories, set theories, and logics.
Among them are, for example, propositional (PL), first (FOL) and higher-order
logic (HOL), sorted (SFOL) and dependent first-order logic (DFOL), description
logics (DL), modal (ML) and common logic (CL) as illustrated in the diagram
below. Single arrows (→) in this diagram denote translations between formal-
izations and hooked arrows (↪→) denote imports.

PL

ML SFOL DFOL

FOL

CL

DL

HOL

OWL

MizarZFCIsabelle

All logics are designed
modularly formed from or-
thogonal theories for indi-
vidual connectives, quanti-
fiers, and axioms. For exam-
ple, the classical ∧ connec-
tive is only declared once in
the whole Logic Atlas, and
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the axiom of excluded mid-
dle and its consequences reside in a separate signature. We also use individual
theories for syntax, proof theory, model theory so that the same syntax can be
combined with different interpretations.

As a running example, we introduce a very simple fragment of the formal-
ization of the syntax of propositional logic.

Example 1 (Propositional Logic) The formalization of propositional logic syntax
consists of the LF signatures illustrated in Fig. 1. We focus on the structural
aspects and omit the details of LF. We four signatures living in two different
namespaces. BASE declares a symbol for the type of propositions. It is imported
into CONJ and IMP which declare conjunction and implication, respectively, and
these are imported PROP.

%namespace = "http://cds.omdoc.org/logics"

%sig BASE = {

%% Type of propositions

o : type.

}

%namespace = "http://cds.omdoc.org/logics/propositional"

%sig CONJ = {%include BASE. ...}

%sig IMP = {%include BASE. ...}

%sig PROP = {%include CONJ. %include IMP.}

Fig. 1. Formalization of Propositional Logic Syntax in Twelf

Overall, the atlas contains over 500 LF signatures, and their highly modular
structure yields a large number of inheritance edges. Additionally, the represen-
tation theorems include:
– the translation from unsorted to sorted first-order logic (which is almost but

not quite an inclusion),
– the translations by relativization of quantifiers from sorted first-order, modal,

and description logics to unsorted first-order logic, in most cases including
the translation of the model theory,

– the translation from propositional and sorted first-order logic to Andrews-
style higher-order logic,

– the negative translation from classical to intuitionistic logic,
– the translation from type theory to set theory that interprets types as sets

and terms as elements, including a translation of Isabelle/HOL to ZF set
theory,

– the Curry-Howard correspondence between logic, type theory, and category
theory.

All translations include translations of the proof theory, which guarantees their
proof theoretical soundness due to the type-preservation of signature morphisms.

This leads to a highly interlinked non-linear structure of the atlas. Moreover,
it is designed highly collaboratively with strong interdependence between the
developers. Therefore, it leads to a number of MKM challenges.
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For example, the LF modules are distributed over files and these files over
directories. This structure is semantically transparent because all references to
modules are made by URIs. The URIs are themselves hierarchical grouping the
modules into nested namespaces. It is desirable that these namespaces do not
have to correspond to source files or directories. Therefore, the mapping between
URIs and URLs is non-trivial and a separate management challenge.

Another problem is that encodings in LF are typically very difficult to read
for anybody but the author. In a collaborative setting, it is desirable to interact
with the logic graph not only through the LF source syntax but also through
browsable, cross-referenced XHMTL+MathML. These should be interactive and
for example permit looking up the definition of a symbol or displaying the re-
constructed type of a variable. While we have presented such an interface in
[GLR09] already, the systematic integration into the authoring process, where
the state of the art is a text editor, has so far been lacking.

2.2 Computer Science Lecture Notes

The GenCS corpus consists of the course notes and problems of a two-semester
introductory course in Computer Science [Koh] held at Jacobs University by one
of the authors in the last eight years. The course notes currently comprise 300
pages with over 500 slides organized in over 800 files; they are accompanied by
a database of more than 1000 homework/exam problems. All course materials
are authored and maintained in the STEX format [Koh08], a modular, semantic
variant of LATEX that shares the information model with OMDoc; see Fig. 2
for an example. In our nomenclature, STEX is used as a source language that
is transformed into OMDoc via the LATEXML daemon [GSK11]. For debugging
and high-quality print the STEX sources an also be typeset via pdflatex, just as
ordinary LATEX documents. The encoding makes central use of the modularity
afforded by the theory graph approach; knowledge units like slides are encoded
as “modules” (theories in OMDoc) and are interconnected by theory morphisms
(module imports). Modules also introduce concepts via \definiendum and se-
mantic macros via \symdef, these are inherited via the module import relation.

3 A Multi-Dimensional Knowledge Representation

3.1 Dimensions of Knowledge

In order to address the knowledge management challenges outlined above, we
devise a methodology that permits the parallel maintenance of the orthogonal di-
mensions of the knowledge contained in a collection of mathematical documents.
It is based on two key concepts: (i) a hierarchic organization of dimensions and
knowledge items in a file-system-like manner inspired by the project view from
software engineering, and (ii) the use of MMT URIs [RK10] as a standardized
way to interlink both between different knowledge items and between the differ-
ent dimensions of the same knowledge item.
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\begin{module}[id=trees]
\symdef[name=tdepth]{tdepthFN}{\text{dp}}
\symdef{tdepth}[1]{\prefix\tdepthFN{#1}}
\begin{definition}[id=tree-depth.def]
Let $\defeq{T}{\tup{V,E}}$ be tree, then the {\definiendum [tree-depth]{depth}}
$\tdepth{v}$ of a node $\inset{v}{V}$ is defined recursively: $\tdepth{r}=0$ for
the root $r$ of $T$ and $\tdepth(w)=1+\tdepth(w)$ if $\inset{\tup{v,w}}E$.

\end{definition}
...
\end{module}

\begin{module}[id=binary-trees]
\importmodule[\KWARCslides{graphs-trees/en/trees}]{trees}
...
\begin{definition}[id=binary-tree.def,title=Binary Tree]
A \definiendum[binary-tree]{binary tree} is a \termref[cd=trees,name=tree]{tree}
where all \termref[cd=graphs-intro,name=node]{nodes}
have \termref[cd=graphs-intro,name=out-degree]{out-degree} 2 or 0.

\end{definition}
...

\end{module}

Fig. 2. Semiformalization of two course modules

The MMT URI of a toplevel knowledge item is of the form g?M where g is the
namespace and M the module name. Namespaces are URIs of the form 〈〈scheme〉〉
://[〈〈userinfo〉〉@]D1.. . . Dm[:〈〈port〉〉]/S1/. . ./Sn where the Di are domain labels
and the Si are path segments. Consequently, g?M is a well-formed URI as well.
〈〈userinfo〉〉, and 〈〈port〉〉 are optional, and 〈〈userinfo〉〉, 〈〈scheme〉〉, and 〈〈port〉〉 are
only permitted so that users can form URIs that double as URLs — MMT URIs
differing only in the scheme, userinfo, or port are considered equal.

We arrange a collection of mathematical documents as a folder containing
the following subfolders, all of which are optional:

source contains the source files of a project. This folder does not have a prede-
fined structure.

content contains a semantically marked up representation of the source files in
the OMDoc format. Every namespace is stored in one file whose path is de-
termined by its URI. Modules with namespace D1. . . . .Dm/S1/.../Sn reside
in an OMDoc file with path content/Dm/ . . . /D1/S1/ . . . /Sn.omdoc. Each
module carries an attribute source="/PATH?colB:lineB-colE:lineE" giv-
ing its physical location as a URL. Here PATH is the path to the containing
file in the source, and colB, lineB, colE, and lineE give the begin/end
column/line information.

presentation contains the presentation of the source files in the XHTML+Math-
ML format with JOBAD annotations [GLR09]. It has the same file structure
as the folder content. The files contain XHTML elements whose body has
one child for every contained module. Each of these module has the attribute
jobad:href="URI" giving its MMT URI.

narration contains an arbitrary collection of narratively structured documents.
These are OMDoc files that contain narrative content such as sectioning and
transitions, but no modules. Instead they contain reference elements of the
form <mref target="MMTURI"/> that refer to MMT modules. It is common
but not necessary that these modules are present in the content folder.
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relational contains two files containing an RDF-style relational representation
of the content according to the MMT ontology. Both are in XML format with
toplevel element mmtabox and a number of children. In individuals.abox,
the children give instances of unary predicates such as
<individual type="IsTheory"uri="MMTURI"source="PATH"/>.
In relations.abox, the children give instances of binary predicates such as
<relation subject="MMTURI1"predicate="ImportsFrom"object="MMTURI2"source

="PATH"/>. Usually, the knowledge items occurring in unary predicates or as
the subject of a binary predicate are present in the content. However, the
object of a binary predicate is often not present, namely when a theory im-
ports a remote theory. In both cases, we use an attribute source to indicate
the source that induced the entry; this is important for change management
when one of the source files was changed.

Example 2 (Continuing Ex. 1)

propositional-syntax
source
base.elf
modules.elf
prop.elf

content
org
omdoc
cds
logics.omdoc
logics
propositional
syntax.omdoc

presentation
org
omdoc
cds
logics.xhtml
logics
propositional
syntax.xhtml

narration
base.omdoc
modules.omdoc
prop.omdoc

relational
individual.abox
relations.abox

Fig. 3. Files of the Running Ex-
ample

The directory structure for the signatures
from Ex. 1 is given in Fig. 3 using a root
folder named propositional-syntax. Here
we assume that the subfolder source con-
tains the Twelf source files base.elf which
contains the signature BASE, modules.elf

which contains CONJ and IMP, and prop.elf

which contains PROP.
Based on the MMT URIs of the signa-

tures in the source files, their content rep-
resentation is given as follows. The signature
BASE has the MMT URI http://cds.omdoc.
org/logics?BASE. The other signatures have
MMT URIs such as http://cds.omdoc.

org/logics/propositional/syntax?CONJ. The
content representation of the signature
BASE is given in the OMDoc file
content/org/omdoc/cds/logics.omdoc. The
other content representations reside in
the file content/org/omdoc/cds/logics/

propositional/syntax.omdoc.
The subfolder presentation contains the

respective XHTML files, logics.xhtml and
syntax.xhmtl. All files in Fig. 3 can be
downloaded at https://svn.kwarc.info/

repos/twelf/projects/propositional-syntax.

Our methodology integrates various powerful conceptual distinctions that
have been developed in the past. Firstly, our distinction between the source and
the content representation corresponds to the distinction between source and
binary in software engineering. Moreover, our directory structure is inspired by
software projects, such as in Java programming. In particular, the use of URIs
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to identify content (binary) items corresponds to identifiers for Java classes.
Therefore, existing workflows and implementations from software engineering
can be easily adapted, for example in the use of project-based IDEs (see Sect. 4).

Secondly, the distinction between content and presentation has been well
studied in the MKM community and standardized in MathML [Aus+03]. In
particular, the cross-references from presentation to content correspond to the
interlinking of content and presentation in the parallel markup employed in
MathML, which we here extend to the level of document collections.

Thirdly, the distinction between content and narrative structure was already
recognized in the OMDoc format. The general intuition there is that narra-
tive structures are “presentations” at the discourse level. But in contrast to the
formula level, presentations cannot be specified and managed via notation defi-
nitions. Instead we add narrative document structure fragments, i.e. document-
structured objects that contain references to the content representations and
transition texts as lightweight structures to the content commons; see [Mül10]
for details and further references.

Finally, the distinction between tree-structured content representation and
the relational representation corresponds to the practice of the semantic web
where RDF triples are used to represent knowledge as a network of linked data.
see [Lan11] for an overview.

3.2 A Mathematical Archive Format

We will now follow the parallelism to software engineering developed in the
previous section: We introduce mathematical archives — mar files — that cor-
respond to Java archives, i.e., jar files [Ora]. We define a mathematical archive
to be a zip file that contains the directory structure developed in Sect. 3.1. By
packaging all knowledge dimensions in a single archive, we obtain a convenient
and lightweight way of distributing multi-dimensional collections of interlinked
documents.

To address into the content of a mar archive, we also define the following
URL scheme: Given a mar whole URL is file:/A and which contains the source
file source/S, then the URL mar:/A/S resolves to that source file. We define the
URL mar:/A/S?Pos accordingly if Pos is the position of a module given by its
line/column as above.

Similarly, to the compilation and building process that is used to create jar

files, we have implemented a building process for mar files. It consists of three
stages. The first stage (compilation) depends on the source language and produce
one OMDoc file for every source file whose internal structure corresponds to the
source file. This is implemented in close connection with dedicated tools for the
source language. In particular, we have implemented a translation from LF to
OMDoc as part of the Twelf implementation of LF [PS99; RS09]. Moreover, we
have implemented a translation from STEX to OMDoc based on the LATEXML
daemon [GSK11].

The second stage (building) is generic and produces the remaining knowl-
edge dimensions from the OMDoc representation. In particular, it decomposes

7



the OMDoc documents into modules and reassembles them according to their
namespaces to obtain the content representation. The narrative dimension is
obtained from the initial OMDoc representation by replacing all modules with
references to the respective content item. We have implemented this as a part of
the existing MMT API [KRZ10]. Finally, the API already includes a rendering
engine that we use to produce the presentation and the relational representation.

Then the third stage (packaging) collects all folders in a zip archive. For LF,
we integrate all three stages into a flexible command line application.

Example 3 (Continuing Ex. 2) The mathematical archive file for the running ex-
ample can be obtained at https://svn.kwarc.info/repos/twelf/projects/

propositional-syntax.mar.

3.3 Catalog Services

The use of URIs as knowledge identifiers (rather than URLs) is crucial in or-
der to permit collaborative authoring and convenient distribution of knowledge.
However, it requires a catalog that translates an MMT URIs to the physical
location, given by a URL, of a resource. Typical URLs are those in a file system,
in a mathematical archive, or a remote or local repository. It is trivial to build
the catalog if the knowledge is already present in content form where locations
are derived from the URI.

But the catalog is already needed during the compilation process: For ex-
ample, if a theory imports another theory, it refers to it by its MMT URI.
Consequently, the compilation tool must already be aware of the URI-to-URL
mapping before the content has been produced. However, the compilation tool
is typically a dedicated legacy system that natively operates on URLs already
and does not even recognize URIs. This is the case for both Twelf and LATEX.

Therefore, we have implemented standalone catalog services for these two
tools and integrated them with the respective system. In the case of Twelf, the
catalog maintains a list of local directories, files, and mar archives that it watches.
It parses them whenever they change and creates the URI-URL mapping. When
Twelf encounters a URI, it asks the catalog via HTTP for the URL. This parser
only parses the outer syntax that is necessary to obtain the structure of the
source file; it is implemented generically so that it can be easily adapted to
other formal declarative languages.

An additional strength of this catalog is that it can also handle ill-formed
source representations that commonly arise during authoring. Moreover, we also
use the catalog to obtain the line/column locations of the modules inside the
source files so that the content-to-source references can be added to the content
files.

In the case of STEX, a poor man’s catalog services is implemented directly in
TEX: the base URIs of the GenCS knowledge collection (see \KWARCslides in
Fig 2) is specified by a \defpath statement in the document preamble and can
be used in the \importmodule macros. The module environments induce inter-
nal TEX structures that store information about the imports (\importmodule)
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structure and semantic macros (\symdef), therefore these three STEX primitives
have to be read whenever a module is imported. To get around difficulties with
selective input in TEX, the STEX build process excerpts a STEX signature module
〈〈module〉〉.sms from any module 〈〈module〉〉.tex. So \importmodule〈〈module〉〉.sms
simply reads 〈〈module〉〉.sms.

4 The Author’s Perspective

The translation from source to a content-like representation has been well-
understood. For languages like LF, it takes the form of a parsing and type re-
construction process that transforms external to internal syntax. The translation
from internal syntax to an OMDoc-based content representation is conceptually
straightforward.

However, it is a hard problem to use the content representation to give the
author feedback about the document she is currently editing. For most formal
mathematical languages, the state of the art is an emacs mode with syntax
highlighting. Only a few systems offer further functionality. For example, the
Agda [Nor05] emacs mode can follow cross-references and show reconstructed
types of missing terms. The Isabelle [Pau94] jEdit can follow cross-references
and show tooltips derived from the static analysis.

A more powerful solution is possible if we always produce all knowledge
dimensions using the compilation and building process as described in Sect. 3.2.
Then generic services can be implemented easily, each of them based on the most
suitable dimension, and we give a few examples in Sect. 4.2.

Note that this is not an efficiency problem: Typically the author only works
on a few files that can be compiled constantly. It is even realistic to hold all
dimensions in memory. The main problem is an architectural one, which is solved
by our multi-dimensional representation. Once this architecture is setup and
made available to IDE developers, it is very easy for them to quickly produce
powerful generic services.

4.1 Multi-Dimensional Knowledge in an IDE

In previous work, we have already presented an example of a semantic IDE [JK10]
based on Eclipse. We can now strengthen it significantly by basing it on our
multi-dimensional representation. Inspired by the project metaphor from soft-
ware engineering, we introduce the notion of a mathematical project in Eclipse.

A mathematical project consists of a folder containing the subfolder from
Sect. 3.1. The author works on a set of source files in the source directory.
Moreover, the project maintains a mathpath (named in analogy to Java’s class-
path) that provides a set of mar archives that the user wishes to include.

The IDE offers the build functionality that runs the compilation and building
processes described in Sect. 3.2 to generate the other dimensions from the source
dimension. The key requirement here is to gracefully degrade in the presence of
errors in the source file. Therefore, we provide an adaptive parser component
that consists of three levels:
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The regex level uses regular expressions to spot important structural proper-
ties in the document (e.g. the namespace and signature declarations in the
case of LF). This compilation level never fails, and its result is an OMDoc
file that contains only the spotted structures and lacks any additional infor-
mation of the content.

The CFG parser level uses a simple context-free grammar to parse the source.
It is able to spot more complicated structures such as comments and nested
modules and can be implemented very easily within Eclipse. Like the pre-
vious level, it produces an approximate OMDoc file, but contrary to the
previous level, it may find syntax errors that are then displayed to the user.

The full parser level uses the dedicated tool (Twelf or LATEX). The resulting
OMDoc fail includes the full content representation. In particular, in the
case of Twelf, it contains all reconstructed types and implicit arguments.
However, it may fail in the case of ill-typed input.

The adaptive parser component runs all parser in order, and retains the best
OMDoc file any of them returns. This file is then used as the input to produce
the remaining content dimensions.

4.2 Added-Value Services

In this section we present several services typically found in software engineer-
ing tools which aim at supporting authoring process. We analyze each of these
services and show that they can can be efficiently implemented by using one or
several dimensions of knowledge.

project explorer is a widget giving an integrated view on a project’s content
by abstracting from the file system location where the sources are are de-
fined. It groups objects by their content location, i.e., their MMT URI. To
implement this widget, we populate the non-leaf nodes of the tree from the
directory structure of the content dimension. The leaf nodes are generated
by running simple XPath queries on the OMDoc files.

outline view is a source level widget which visualizes the main structural com-
ponents. For LF, these include definitions of signatures and namespaces as
well as constant declarations within signatures. Double-clicking on any such
structural components opens the place in the source code where the compo-
nent is defined. Alternatively, the corresponding presentation can be opened.

autocompletion assists the user with getting location and context specific sug-
gestions, e.g., listing declarations available in a namespace. Fig. 4a shows an
example. Note how the namespace prefix base is declared to point to a
certain namespace, and the autocompletion suggests only signatures names
declared in that namespace. The implementation of this feature requires in-
formation about the context where autocompletion is requested, which is
obtained from the interlinked source and content dimensions. Moreover, it
needs the content dimension to compute all possible completions. In more
complicated scenarios, it can also use the relational dimension to compute
the possible completions using the relational queries.
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hover overlay is a feature that shows in-place meta-data about elements at the
position of the mouse cursor such as the full URIs of a symbol, its type or
definitions, a comment, or inferred types of variables. Fig. 4b) shows an ex-
ample. The displayed information is retrieved from the content dimension. It
is also possible to display the information using the presentation dimension.

definition/reference search makes it easy for a user to find where a certain
item is defined or used. Although the features require different user inter-
faces the functionality is very similar, namely, finding relations. Just like in
the hover overlay feature, one first finds the right item in the content repre-
sentation and then use the relation dimension to find the requested item(s).

theory-graph display provides a graphical visualization of the relations among
knowledge items. To implement this feature we apply a filter on the multi-
graph from the relations dimension and uses 3rd party software to render
it.

Fig. 4. a) Context aware Auto-Completion b) Metadata information on hover

5 The Reader’s Perspective

We have developed the Planetary system (see [Koh+11; Dav+10; Pla] for an
introduction) as the reader’s complement to our IDE. Planetary is a Web 3.0
system1 for semantically annotated document collections in Science, Technology,
Engineering and Mathematics (STEM). In our approach, documents published in
the Planetary system become flexible, adaptive interfaces to a content commons
of domain objects, context, and their relations.

Planetary TNTBase

STEX

XHTML

Active Documents Content Commons

Fig. 5. The Active Documents Architecture

We call this framework the
Active Documents Para-
digm (ADP), since documents
can also actively adapt to user
preferences and environment
rather than only executing ser-
vices upon user request. Our

1 We adopt the nomenclature where Web 3.0 stands for extension of the Social Web
with Semantic Web/Linked Open Data technologies.
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framework is based on seman-
tically annotated documents together with semantic background ontologies
(which we call the content commons). This information can then be used
by user-visible, semantic services like program (fragment) execution, compu-
tation, visualization, navigation, information aggregation and information re-
trieval [GLR09].

The Planetary system directly uses all five incarnations/dimensions of math-
ematical knowledge specified in Sect 3.1. In the content incarnation, Planetary
uses OMDoc for representing content modules, but authors create and maintain
these using STEX in the source dimension and the readers interact with the ac-
tive documents encoded as dynamic XHTML+MathML+RDFa (the source in-
carnation of the material). We use the LATEXML daemon
[Mil; GSK11] for the transformation from STEX to OMDoc, this is run on every
change to the STEX sources. The basic presentation process [KMR08] process for
the OMDoc content modules is provided by the TNTBase system [ZK09].

But Planetary also uses the narrative dimension: content modules are used
not only for representing mathematical theories, but also for document struc-
tures: narrative modules consist of a mixture of sectional markup, inclusion
references, and narrative texts that provide transitions (narrative glue) between
the other objects. Graphs of narrative modules whose edges are the inclusion
references constitute the content representations of document fragments, docu-
ments, and document collections in the Planetary system, wich generates active
documents from them. It uses a process of separate compilation and dynamic
linking to equip them with document (collection)-level features like content ta-
bles, indexes, section numbering and inter-module cross-references; see [Dav+11]
for details.

As the active documents use identifiers that are relative to the base URI
of the Planetary instance, whereas the content commons uses MMT URIs, the
semantic publishing map which maintains the correspondence between these
is a central, persistent data structure maintained by the Planetary system.

This is one instance of the relational di-
mension, another is used in the For instance,
the RDFa embedded in the presentation of a
formula (and represented in the linking part
of the math archive) can be used for defi-
nition lookup as shown on the left. Actually
the realization of the definition lookup service
involves presentation (where the service is

embedded) and content (from which the definition is fetched to be presented
by the service) incarnations as well.

In the future we even want
to combine this with the source
dimension by combining it with
a \symdef-look service that
makes editing easier. This can
be thought of as a presentation-
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triggered complement to the
editor-based service on the right that looks up \symdefs by their definienda.

6 Conclusion

We have presented an infrastructure for creating, storing, managing, and dis-
tributing mathematical knowledge in various pragmatic forms. We have iden-
tified five aspects that have to be taken into account here: (i) human-oriented
source languages for efficient editing of content, (ii) the modular content repre-
sentation that has been the focus of attention in MKM so far, (iii) active pre-
sentations of the content for viewing, navigation, and interaction, (iv) narrative
structures that allow binding the content modules into self-contained documents
that can be read linearly, and (v) relational structures that cross-link all these
aspects and permit keeping them in sync.

We have developed and tested this infrastructure on the LATIN logic atlas,
a highly modular graph of logics and logic morphisms using Twelf as the source
language. Our focus was on the authoring perspective using our semantic IDE.
The other experiment that informed the development was the Planetary system,
a semantic publishing system that we use for our lecture notes with STEX as a
surface language and provides an infrastructure for assembling content modules
into document and collection structures.

In the future, we want to combine these systems and perspectives more
tightly. For example, we could use Planetary to discuss and review logic formal-
izations in Twelf, or write papers about the formalizations in STEX. This should
not pose any fundamental problems as the surface languages are interoperable
by virtue of having the same, very general data model: the OMDoc ontology. By
the same token we want to add additional surface languages and presentation
targets that allow to include other user groups. High-profile examples include
the Mizar Mathematical Language and Isabelle/ISAR.

Finally, there is a sixth aspect that may be added to the math archive infras-
tructure: discussions. The Planetary system already allows localized discussions
on the content modules/presentations, which form an important part of the sys-
tem content. These would probably be worth saving in math archives.
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[GLR09] J. Gičeva, C. Lange, and F. Rabe. “Integrating Web Services into

Active Mathematical Documents”. In: Intelligent Computer Mathe-
matics. Ed. by J. Carette and L. Dixon and C. Sacerdoti Coen and
S. Watt. Vol. 5625. Lecture Notes in Computer Science. Springer,
2009, pp. 279–293.

[GSK11] Deyan Ginev, Heinrich Stamerjohanns, and Michael Kohlhase. “The
LATEXML Daemon: A LATEX Entrance to the Semantic Web”. sub-
mitted. 2011. url: https://kwarc.eecs.iu-bremen.de/repos/
arXMLiv/doc/cicm-systems11/paper.pdf.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining
logics”. In: Journal of the Association for Computing Machinery 40.1
(1993), pp. 143–184.

[JK10] Constantin Jucovschi and Michael Kohlhase. “sTeXIDE: An Inte-
grated Development Environment for sTeX Collections”. In: In-
telligent Computer Mathematics. Ed. by Serge Autexier et al.
LNAI 6167. Springer Verlag, 2010, pp. 336–344. arXiv:1005.5489v1
[cs.OH].

[KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. “Nota-
tions for Living Mathematical Documents”. In: Intelligent Computer
Mathematics. 9th International Conference, AISC, 15th Symposium,
Calculemus, 7th International Conference MKM (Birmingham, UK,
July 28–Aug. 1, 2008). Ed. by Serge Autexier et al. LNAI 5144.
Springer Verlag, 2008, pp. 504–519. url: http://omdoc.org/pubs/
mkm08-notations.pdf.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project.
See https://trac.omdoc.org/LATIN/. 2009.

[Koh] General Computer Science: GenCS I/II Lecture Notes. http://

gencs.kwarc.info/book/1. Semantic Course Notes in Panta Rhei.
2011. url: http://gencs.kwarc.info/book/1.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”.
In: Mathematics in Computer Science 2.2 (2008), pp. 279–304. url:
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf.

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active
Documents for STEM”. In: accepted for publication at ICCS 2011
(Finalist at the Executable Papers Challenge). 2011. url: https:
//svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. “Towards MKM in the
Large: Modular Representation and Scalable Software Architec-
ture”. In: Intelligent Computer Mathematics. Ed. by S. Autexier et
al. Vol. 6167. Lecture Notes in Computer Science. Springer, 2010,
pp. 370–384.

14

https://svn.mathweb.org/repos/planetary/doc/sepublica11/paper.pdf
https://svn.mathweb.org/repos/planetary/doc/sepublica11/paper.pdf
https://kwarc.eecs.iu-bremen.de/repos/arXMLiv/doc/cicm-systems11/paper.pdf
https://kwarc.eecs.iu-bremen.de/repos/arXMLiv/doc/cicm-systems11/paper.pdf
http://arxiv.org/abs/1005.5489v1
http://arxiv.org/abs/1005.5489v1
http://omdoc.org/pubs/mkm08-notations.pdf
http://omdoc.org/pubs/mkm08-notations.pdf
https://trac.omdoc.org/LATIN/
http://gencs.kwarc.info/book/1
http://gencs.kwarc.info/book/1
http://gencs.kwarc.info/book/1
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf


[Lan11] Christoph Lange. “Enabling Collaboration on Semiformal Mathe-
matical Knowledge by Semantic Web Integration”. submitted Jan-
uary 31, defended March 13. PhD thesis. Jacobs University Bremen,
2011. url: https://svn.kwarc.info/repos/swim/doc/phd/phd.
pdf.

[Mil] Bruce Miller. LaTeXML: A LATEX to XML Converter. url: http:

//dlmf.nist.gov/LaTeXML/ (visited on 03/03/2011).
[Mül10] Christine Müller. “Adaptation of Mathematical Documents”. PhD

thesis. Jacobs University Bremen, 2010. url: http://kwarc.info/
cmueller/papers/thesis.pdf.

[Nor05] U. Norell. The Agda WiKi. http://wiki.portal.chalmers.se/
agda. 2005.

[Ora] Oracle. JDK 6 Java Archive (JAR). http://download.oracle.

com/javase/6/docs/technotes/guides/jar.
[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover. Vol. 828. Lecture

Notes in Computer Science. Springer, 1994.
[Pla] Planetary Developer Forum. url: http://trac.mathweb.org/

planetary/ (visited on 01/20/2011).
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