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Abstract. Logical frameworks like LF are used for formal representations of logics in
order to make them amenable to formal machine-assisted meta-reasoning. While the focus
has originally been on logics with a proof theoretic semantics, we have recently shown how
to de�ne model theoretic logics in LF as well. We have used this to de�ne new institutions
in the Heterogeneous Tool Set in a purely declarative way.
It is desirable to extend this model theoretic representation of logics to the level of struc-
tured speci�cations. Here a particular challenge among structured speci�cation building
operations is hiding, which restricts a speci�cation to some export interface. Speci�cation
languages like ASL and CASL support hiding, using an institution-independent model
theoretic semantics abstracting from the details of the underlying logical system.
Logical frameworks like LF have also been equipped with structuring languages. However,
their proof theoretic nature leads them to a theory-level semantics without support for
hiding. In the present work, we show how to resolve this di�culty.

1 Introduction

This work is about reconciling the model theoretic approach of algebraic speci�cations and insti-
tutions [AKKB99,ST10,GB92] with the proof theoretic approach of logical frameworks [HHP93,Pau94].

In [Rab10,CHK+10], we show how to represent institutions in logical frameworks, notably
LF [HHP93], and extend the Heterogeneous Tool Set [MML07] with a mechanism to add new
logics that are speci�ed declaratively in a logical framework.

In the present work, we extend this to the level of structured speci�cations, including hiding.
In particular, we will translate the ASL-style structured speci�cations with institutional seman-
tics [SW83,Wir86,ST88] (also used in CASL [Mos04]) into the module system MMT [Rab08]
that has been developed in the logical frameworks community.

Like ASL, MMT is a generic structuring language that is parametric in the underlying lan-
guage. But where ASL assumes a model theoretic base language � given as an institution � MMT
assumes a proof theoretic base language given in terms of typing judgments. If we instantiate
MMT with LF (as done in [RS09]), we can represent both logics and theories as MMT-structured
LF signatures. This is used in the LATIN project [KMR09] to obtain a large body of structured
representations of logics and logic translations. An important practical bene�t of MMT is that
it is integrated with a scalable knowledge management infrastructure based on OMDoc [Koh06].

However, contrary to model theoretic structuring languages like ASL, structuring languages
like MMT for logical frameworks have a proof theoretic semantics and do not support hiding,
which makes them less expressive than ASL. Therefore, we proceed in two steps. Firstly, we



extend LF+MMT with primitives that support hiding while preserving its proof theoretic �avor.
Here we follow and extend the theory-level semantics for hiding given in [GR04]. Secondly, we
assume an institution that has been represented in LF, and give a translation of ASL-structured
speci�cations over it into the extended LF+MMT language.

The paper is organised as follows. In Sect. 2, we recall ASL- or CASL-style structured
speci�cations with their institution-independent semantics; and in Sect. 3 we recall LF and
MMT with its proof theoretic semantics. In Sect. 4, we extend MMT with hiding, and in Sect. 5,
we de�ne a translation of ASL style speci�cations into MMT and prove its correctness. Sect. 6
concludes the paper.

2 Structured speci�cations

The notion of institution [GB92] has been introduced as a formalisation of the notion of logical
system. It abstracts away from the details of signatures, sentences and models. Moreover, it as-
sumes that signatures can be related via signature morphisms (and this carries over to sentences
and models). This will be of importance for structuring languages.

De�nition 1. An institution is a quadruple I = (Sig ,Sen,Mod , |=) where:

� Sig is a category of signatures;
� Sen : Sig → SET is a functor to the category SET of small sets and functions, giving for

each signature Σ its set of sentences Sen(Σ) and for any signature morphism ϕ : Σ → Σ′

the sentence translation function Sen(ϕ) : Sen(Σ)→ Sen(Σ′) (denoted also ϕ);
� Mod : Sigop → Cat is a functor to the category of categories and functors Cat 1 giving for

any signature Σ its category of models Mod(Σ) and for any signature morphism ϕ : Σ → Σ′

the model reduct functor Mod(ϕ) : Mod(Σ′)→ Mod(Σ) (denoted _|ϕ);
� a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant under change
of notation and context.

For an institution I, a theory is a pair (Σ,E) where Σ is a signature and E is a set of
sentences. For a class E of Σ-sentences, let us denote ModΣ(E) the class of all Σ-models
satisfying E and ClΣ(E) the logical consequences of E.

Working with monolithic speci�cations is only suitable for speci�cations of fairly small size.
For practical situations, in the case of large systems, a �at speci�cation would become impossible
to understand and use e�ciently. Moreover, a modular design allows for reuse of speci�cations.
Therefore, algebraic speci�cation languages provide support for structuring speci�cations.

1 We disregard here the foundational issues, but notice however that Cat is actually a so-called quasi-
category.
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The semantics of (structured) speci�cations can be given as a signature and either (i) a
class of models of that signature (model-level semantics) or (ii) a set of sentences over that
signature (theory-level semantics). In the presence of structuring, the two semantics may be
di�erent in a sense that will be made precise below. The �rst algebraic speci�cation language,
Clear [BG80], used a theory-level semantics; the �rst algebraic speci�cation language using
model-level semantics for structured speci�cations was ASL [SW83,Wir86], whose structuring
mechanisms were extended to an institution-independent level in [ST88].

In Fig. 1, we present a kernel of speci�cation-building operations and their semantics over an
arbitrary institution, similar to the one introduced in [ST88]. The third and fourth columns of the
table contain the model-level and the theory-level semantics for the corresponding structured
speci�cation SP , denoted Mod [SP ] and Thm[SP ] respectively, while the signature of SP ,
denoted Sig [SP ] is in the second column of the table. Note that we restrict attention to hiding
against inclusion morphisms. Moreover, we will only consider basic speci�cations that are �nite.

SP Sig [SP ] Mod [SP ] Thm[SP ]

(Σ,E) Σ ModΣ(E) ClΣ(E)

SP1 ∪ SP2 Sig [SP1] Mod(SP1) ∩Mod(SP2) ClΣ(Thm[SP1] ∪ Thm[SP2])Sig [SP1] = Sig [SP2]

σ(SP )
Σ′ {M ∈ Mod(Σ′)|M |σ ∈ Mod [SP ]} ClΣ({σ(e)|e ∈ Thm[SP ]})

σ : Sig [SP ] → Σ′

σ−1(SP )
Σ {M |σ|M ∈ Mod [SP ]} {e ∈ Sen(Σ)|σ(e) ∈ Thm[SP ]}

σ : Σ ↪→ Sig [SP ]

Fig. 1. Semantics of Structured Speci�cations

Without hiding, the two semantics can be regarded as dual because we have Thm[SP ] =
Thm(Mod [SP ]), which is called soundness and completeness in [ST10]. But completeness does
not hold in general in the presence of hiding [Bor02]. Moreover, in [ST10] it is proved that this
choice for de�ning the theory level semantics is the strongest possible choice with good structural
properties (e.g. compositionality). This shows that the mismatch between theory-level semantics
and model-level semantics cannot be bridged in this way. We will argue below that this is not a
failure of formalist methods in general; instead, we will pursue a di�erent approach that takes
model-level aspects into account while staying mechanizable.

The mismatch between model and theory-level semantics is particularly apparent when look-
ing at re�nements. For two Σ-speci�cations SP and SP ′, we write SP  Σ SP ′ if Mod [SP ′] ⊆
Mod [SP ]. Without hiding, this is equivalent to Thm[SP ] ⊆ Thm[SP ′], which can be seen as
soundness and completeness properties for re�nements. But in the presence of hiding, both
soundness (if SP has hiding) and completeness (if SP ′ has hiding) for re�nements may fail.
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3 LF and MMT

The Edinburgh Logical Framework LF [HHP93] is a proof theoretic logical framework based on
a dependent type theory related to Martin-Löf type theory [ML74]. Precisely, it is the corner of
the λ-cube [Bar92] that extends simple type theory with dependent function types. In [RS09],
LF was extended with a module system called MMT. MMT [Rab08] is a generic module system
which structures signatures using named imports and signature morphisms. The expressivity of
MMT is similar to that of ASL or development graphs [AHMS99] except for hiding. In [Rab10],
LF is used as a logical framework to represent both proof and model theory of object logics.

We give a brief summary of basic LF signatures, MMT-structured LF signatures, and the
representation of model theory in LF in Sect. 3.1, 3.2, and 3.3, respectively. Our approach is not
restricted to LF and can be easily generalized to other frameworks such as Isabelle or Maude
along the lines of [CHK+10].

3.1 LF

LF expressions E are grouped into kinds K, kinded type-families A : K, and typed terms t : A.
The kinds are the base kind type and the dependent function kindsΠx : A.K. The type families
are the constants a, applications a t, and the dependent function type Πx : A.B; type families
of kind type are called types. The terms are constants c, applications t t′, and abstractions
λx : A. t. We write A→ B instead of Πx : A.B if x does not occur in B. An LF signature Σ is
a list of kinded type family declarations a : K and typed constant declarations c : A. Optionally,
declarations may carry de�nitions. A grammar is given in Sect. 3 below.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′ is a typing- and
kinding-preserving map of Σ-symbols to Σ′-expressions. Thus, σ maps every constant c : A of
Σ to a term σ(c) : σ(A) and every type family symbol a : K to a type family σ(a) : σ(K). Here,
σ is the homomorphic extension of σ to Σ-expressions, and we will write σ instead of σ from
now on. Signature morphisms preserve typing and kinding: if `Σ E : E′, then `Σ′ σ(E) : σ(E′).

Composition and identity of signature morphisms are straightforward, and we obtain a cat-
egory LF of LF signatures and morphisms. This category has inclusion morphisms by taking
inclusions between sets of declarations. Moreover, it has pushouts along inclusions [HST94].
Finally, a partial morphism from Σ to Σ′ is a signature morphism from a subsignature of Σ
to Σ′.

LF uses the Curry-Howard correspondence to represent axioms as constants and theorem
as de�ned constants (whose de�niens is the proof). Then the typing-preservation of signature
morphisms corresponds to the theorem preservation of theory morphisms.

3.2 LF+MMT

The motivation behind the MMT structuring operations is to give a �attenable, concrete syntax
for a module system on top of a declarative language. Signature morphisms are used as the main
concept to relate and form modular signatures, and signature morphisms can themselves be given
in a structured way. Moreover, signature morphisms are always named and can be composed
into morphism expressions.
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The grammar for the LF+MMT language is given below where [−] denotes optional parts.
Object level expressions E unify LF terms, type families, and kinds, and morphism level ex-
pressions are composed morphisms:

Signature graph G ::= · | G, %sigT = {Σ} | %view v : S → T = {σ}
Signatures Σ ::= · | Σ, %struct s : S = {σ} | Σ, c : E[= E′]
Morphisms σ ::= · | σ, %struct s := µ | σ, c := E
Object level expressions E ::= type | c | x | E E | λx : E.E | Πx : E.E | E → E
Morphism level expressions µ ::= · | T.s | v | µ µ′

The LF signatures and signature morphisms are those without the keyword %struct. Those
are called �at.

Syntax The module level declarations consist of named signatures R,S, T and two kinds of
signature morphism declarations. Firstly, views %view v : S → T = {σ} occur on toplevel
and declare an explicit morphism from S to T given by σ. Secondly, structures %struct s :
S = {σ} occur in the body of a signature T and declare an import from S into T . Structures
carry a partial morphism σ from S to T , i.e., σ maps some symbols of S to expressions over T .
Views and structures correspond to re�nements and inclusion of subspeci�cations in unions in
ASL and CASL.

MMT di�ers from ASL-like structuring languages in that it uses named imports. Conse-
quently, the syntax of MMT can refer to all paths in the signature graph using composed
morphisms; these morphism level expressions µ are formed from structure names T.s, view
names v, and diagram-order composition µ µ′.

MMT considers morphisms µ from S to T as expressions on the module level. Such a mor-
phism µ has type S and is valid over T . Most importantly, MMT permits structured mor-
phisms: The morphisms σ occurring in views and structures from S to T may map a structure
%struct r : R = {σ} declared in S (i.e., a morphism level constant of type R over S) to a
morphism µ : R → T (i.e., a morphism level expression of type R over T ). These are called
structure maps %struct r := µ.

Semantics The semantics of LF+MMT is given by �attening. Every well-formed LF+MMT
signature graph G is �attened into a diagram G over LF. Every signature S in G produces a
node S in G; every structure %struct s : S = {σ} occurring in T produces an edge T.s from
S to T ; and every view %view v : S → T = {σ} produces an edge v from S to T . Accordingly,
every morphism expression µ yields a morphism µ. These results can be found in [RS09], and
we will only sketch the central aspects here.

The �attening is de�ned by recursively replacing all structure declarations and structure
maps with lists of �at declarations. To �atten a structure declaration %struct s : S = {σ} in a
signature T , assume that S and σ have been �attened already. For every declaration c : E[= E′]
in S, we have in T

� a declaration s.c : T.s(E) = E′′ in S if σ contains c := E′′,

� a declaration s.c : T.s(E) [= T.s(E′)] in S otherwise.
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The morphism T.s from S to T maps every S-symbol c to the T symbol s.c.
For a view %view v : S → T = {σ}, the morphism v from S to T is given by the �attening

of σ. · is the identity morphism in LF, and µ µ′ is the composition µ′ ◦ µ.
Finally, morphisms σ from S to T are �attened as follows. To �atten a structure map

%struct r := µ where r is a structure from R to S, assume that R has been �attened already.
Then the �attening of σ contains s.c := µ(c) for every constant c in R.

In particular, if %sigT = {Σ, %struct s : S = {σ}} the semantics of signature graphs
is such that the left diagram below is a pushout. Here S0 is a subsignature of S such that
σ : S0 → Σ. Moreover, if S declares a structure r of type R, then the semantics of a structure
map %struct r := µ occurring in σ is that the diagram on the right commutes.

S0 S

Σ T

σ T.s

R S

T

µ

S.r

T.s

3.3 Representing Logics in LF

The main idea behind the representation of models in LF is to represent models of Σ as LF
morphisms pΣq→ F where pΣq encodes Σ and F is some LF signature. Usually, F is a �xed
signature representing the foundation of mathematics such as an encoding of set theory. The
feasibility of this approach has been demonstrated in [HR10,IR10], which in particular give
encodings of ZFC set theory, Mizar's set theory, and Isabelle's higher-order logic.

F

LMod

LSyn

Lmod

ΣSyn

ΣMod

Σmod

F
idF

M

We use a simpli�ed variant and represent the underlying logic L
as tuples (LSyn , LMod , Lmod ,F) as in the commuting LF diagram on
the right. LSyn represents the syntax of the logic, F represents the
foundation of mathematics, and LMod represents individual models as
an extension of F . Finally, Lmod interprets the syntax in the model.

Individual signatures are represented as inclusion morphisms out
of L, from which we obtain ΣMod and Σmod as a pushout. Now we can
see ΣMod as a theory in the meta-language F axiomatizing Σ models.
Thus models M can �nally be represented as morphisms from ΣMod

into the foundation that are the identity on F .
Due to the Curry-Howard representation of proofs as terms, there is

no conceptual di�erence between representing signatures and theories
of the underlying logic. If ΣSyn contains axioms, then so does ΣMod ,
and M must map these axioms to proofs in F .

We assume that LSyn contains two distinguished declarations o : type and ded : o →
type. Then Σ-sentences are represented as closed βη-normal terms of type o over ΣSyn . The
satisfaction of a sentence F by a model M is represented as the inhabitation of the type
M(Σmod(ded F )) over F . Theorems are represented as sentences F for which the type ded F is
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inhabited over ΣSyn . In [Rab10,CHK+10], the proof theory of the logic is represented parallel
to the model theory as a morphism Lpf : LSyn → LPf where LPf adds the proof rules that
populate the types dedF . Here, we will assume for simplicity that LSyn = LPf , and our results
easily extend to the general case.

4 Hiding in LF and MMT

In a proof theoretic setting, �attening is not a theorem but rather the way to assign meaning
to a modular signature. Therefore, hiding is a particularly di�cult operation to add to systems
like LF+MMT because hiding precludes �attening. We follow the approach taken in [GR04]
and represent signatures with hidden information as inclusions Σv ↪→ Σh where Σv represents
the visible interface Σh \Σv the hidden information. We will abstractly introduce LF signatures
with hidden declarations in and morphisms between such signatures in Sect. 4.1. Then we will
give concrete syntax for them in and generalize the MMT structuring operations in Sect. 4.2.

4.1 LF with Hiding

We will not only introduce LF signatures with hidden declarations but also LF morphisms that
hide constants. The latter is similar to partial morphisms but has to be distinguished from
the partial morphisms that already occur in MMT-structures. Therefore, we need two kinds of
partiality and use the following de�nition.

Given two LF-signatures Σ and Σ′, anH-morphism from Σ to Σ′ consists of two subsigna-
tures Σ0 ↪→ Σ1 ↪→ Σ and an LF signature morphism σ : Σ0 → Σ′. The intuition is that σ maps
all constants in Σ0 to Σ′-expressions and hides all constants in Σ \ Σ1; for the intermediate
declarations in Σ1 \Σ0, σ is left unde�ned, i.e., partial. We call Σ0 the revealed domain and
Σ1 the non-hidden domain of σ. We call σ total if Σ1 = Σ0 and otherwise partial; and we
call σ revealing if Σ = Σ1 and otherwise hiding. Then the (partial) revealing morphisms are
exactly the (partial) LF-morphisms.

For a Σ-expression E, we say that σ maps E if E is a Σ0-expression and that σ hides E if
E is not a Σ1-expression. Then we can de�ne a composition of total H-morphisms as follows:
The revealed domain of σ′ ◦σ is the largest subsignature of the revealed domain of σ comprising
only constants c such that σ′ maps σ(c); then we can put (σ′ ◦ σ)(c) = σ′(σ(c)).

An H-signature is a pair Σ = (Σv, Σh) such that Σv is a subsignature of Σh. We call Σh
the domain and Σv the visible domain of Σ.

Finally, we de�ne the category LFH whose objects are H-signatures and whose morphisms
(Σv, Σh) → (Σ′v, Σ

′
h) are total H-morphisms from Σv to Σ′v. Note that these morphisms are

exactly the total morphisms from Σh to Σ′v whose revealed domain is at most Σv.

Lemma 2. LFH is indeed a category.

Proof. The LFH identity of (Σv, Σh) is the LF identity of Σv. Neutrality is clear. Associativity
follows after observing that σ′′ ◦ (σ′ ◦ σ) hides c i� (σ′′ ◦ σ′) ◦ σ hides c.

LFH-morphisms only translate between the visible domains and may even use hiding in
doing so. We are often interested in whether the hidden information could also be translated.
Therefore, we de�ne:
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De�nition 3. For an LFH-morphism σ0 : Σ → Σ′ with revealed domain Σ0, we write σ0 :
Σ

!→ Σ′ if σ0 can be extended to a total revealing morphism σ : Σh → Σ′h, i.e., if there is an
LF morphism σ : Σh → Σ′h that agrees with σ0 on Σ0.

4.2 LF+MMT with Hiding

We can now extend the MMT structuring to LFH, i.e., to a base language with hiding. The
�attening of signature graphs with hiding will produce LFH-diagrams.

We avoid using pairs (Σv, Σh) in the concrete syntax for H-signatures and instead extend
the grammar of LF+MMT as follows:

Signatures Σ ::= · | Σ, [%hide] %struct s : S = {σ} | Σ, [%hide] c : E[= E]
Morphisms σ ::= · | σ, %struct s := µ | σ, c := E | %hide c | %hide%struct s

If a declaration in Σ has the %hide modi�er, we call it hidden, otherwise visible. Hidden
declarations are necessary to keep track of the hidden information. From a proof theoretical
perspective, it may appear more natural to delete them, but this would not be adequate to
represent ASL speci�cations with hiding.

If σ contains %struct c := E (or %hide c), we say that σmaps (or hides) c, and accordingly
for structures. As before, we call signatures or morphisms �at if they do not contain the %struct

keyword.

The semantics of a well-formed signature graph G is given in two steps: �rst G is �attened
into a �at signature graph G̃, second the semantics of a �at signature graph G is given by an
LFH-diagram G. In particular, every composite µ from S to T occurring in G induces a total
H-morphism µ : Sv → T v.

Well-formedness and semantics are de�ned in a joint induction on the structure of G, and
only minor adjustments to the de�nition of G for LF+MMT are needed. We begin with the �at
syntax.

Firstly, a �at signature %sigT = {Σ} induces a hiding signature T = (T v, Th) as follows:
Th contains all declarations in Σ, and T v is the largest subsignature of Th that contains only
visible declarations. Σ is well-formed if this is indeed a well-formed LFH-object.

Secondly, consider a �at morphism σ and two �at signatures S and T in G. σ induces an
H-morphism from Sv to T v as follows: Its revealed domain is the smallest subsignature of Sv
that contains all constants mapped by σ; its non-hidden domain is the largest subsignature
of Sv that contains no constants hidden by σ. σ is well-formed if this is indeed a well-formed
H-morphism from Sv to T v.

Next we de�ne the semantics of the full syntax by �attening an arbitrary signature graph
G to G̃. We use the same de�nition as in [RS09] except for additionally keeping track of hidden
declarations.

Firstly, consider a signature T with a structure %struct s : S = {σ}, and consider a

declaration of c in S̃. Then T̃ contains a constant s.c de�ned in the same way as for LF+MMT.
Moreover, s.c is hidden in T̃ if s is hidden in T , c is hidden in S, or σ̃ hides c.

Secondly, consider an occurrence of %struct s := µ in σ in a structure or view declaration
with domain S. Since the semantics µ of µ is a total H-morphism, we must consider two cases
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for every visible constant c in S̃: if c is in the revealed domain of µ, then σ̃ contains s.c := µ(c)
as for LF+MMT; otherwise, σ̃ contains %hide s.c.

Thirdly, consider an occurrence of %hide%struct s in σ in a structure or view declaration
with domain S. Then σ̃ contains %hide s.c for every visible constant c of S̃.

Finally, to de�ne well-formedness of signature graphs, we use the same inference system as in
[RS09] with the following straightforward restriction for morphisms: In a structure declaration
%struct s : S = {σ} within T or in a view declaration %view v : S → T = {σ}, σ̃ must be an

H-morphism from S̃v to T̃ v. σ̃ must be total for views and may be partial for structures. Such
structures and views induce edges T.s and v in G in the obvious way.

It is easy to show that well-formedness of the �at syntax is decidable. Moreover, we have

Theorem 4. G̃ is a diagram over LFH for every well-formed signature graph G.

Proof. This is proved by a straightforward induction on the structure of G.

The morphisms σ in structures and views may only map symbols of the visible domain.
Moreover, they may hide some of these symbols. However, if we inspect the de�nition of the
�attening of a structure %struct s : S = {σ}, we see that it imports all constants of S including
the hidden ones and including those hidden by σ. Therefore, we have:

Lemma 5. Assume a well-formed signature graph with hiding G containing a structure %struct s :
S = {σ} in T . Then T.s : S !→ T .

Proof. The extension of T.s to Sh maps every constant c to s.c.

5 Interpreting ASL in LF+MMT

We now introduce the translation from ASL-style structured speci�cations into LF+MMT. We
assume that there is a representation of an institution I in LF (see Sect. 5.1), such that when
translating an ASL-style speci�cation over I (see Sect. 5.2), the resulting MMT speci�cation
is based on this representation. The subsequent subsections deal with proving adequacy of the
translation.

5.1 Logics

Consider an encoding as in Sect. 3 for an institution I. We make the following assumptions
about the adequacy of the encoding.

De�nition 6. We say that a foundation F is adequate if there is (i) a F-type prop : type
such that the formal statements of mathematics can be encoded as F-terms F : prop and (ii)
a type dedF of proofs of F for every F : prop such that dedF is inhabited i� F is a provable
statement.
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This de�nition is necessarily vague. To make it de�nite, we can assume that F is the encoding of
Zermelo-Fraenkel set theory given in [HR10], in which case the terms of type prop are �rst-order
formulas over the binary predicate symbol ∈.

De�nition 7. Assume an adequate F . We say that an institution I = (Sig ,Sen,Mod , |=) is
adequately represented as (LSyn ,F , LMod , Lmod) if there is a functor Φ : Sig → LF/LSyn such
that for every signature Σ (i) Φ(Σ) = ΣSyn is an extension of LSyn , (ii) there is a bijection
p−q mapping Σ-sentences to βη-normal ΣSyn -terms of type o, and p−q is natural with respect
to sentence translation Sen(σ) and morphism application Φ(σ) (iii) there is a bijection p−q
mapping Σ-models to LF-morphisms ΣMod → F , and p−q is natural with respect to model
reduction Mod(σ) and precomposition with Φ(Σ)mod, (iv) satisfaction M |=Σ F holds i� pMq
maps Σmod(pFq) to an inhabited F-type.

Using the de�nitions of [Rab10], this can be stated as an institution comorphism from I to an
appropriate institution based on LF.

Our assumption of a bijection between I-models and LF-morphisms is quite strong. In most
cases, not all models will be representable as morphisms. However, using canonical models
constructed in completeness proofs, in many cases it will be possibly to represent all models up
to elementary equivalence.

5.2 Speci�cations

We de�ne a translation from ASL speci�cations to signature graphs of LF+MMT with hiding.
Since the ASL structuring is built over an arbitrary institution, we assume that the underlying
institution has already been represented in LF and the representation is adequate.

The translation proceeds by induction on the structure of the speci�cation SP . However,
MMT does not use signature expressions in the way ASL uses speci�cation-building operations;
in particular, MMT structures may import only named signatures. Therefore, the translation
introduces one MMT signature declaration for every speci�cation-building operation used in
SP . Note that this leads to an increase in size but not to the exponential blow-up incurred
when �attening.

The cases of the translation are given in Fig. 2. Every speci�cation-building operation yield-
ing a speci�cation SP over a signature Σ is translated to two MMT signatures of the form

%sigNΣ = {%struct l : LSyn , pΣq}, %sigNSP = {%struct s : NΣ , pSPq}

pΣq is a list of declarations representing the visible signature symbols, and similarly pSPq
represents the hidden signature symbols and all axioms. These must refer to the logical symbols
of the underlying logic, which is why NΣ starts with an import from LSyn . NΣ and NSP are
fresh names generated during the translation.

We will describe the translation case by case visualizing the involved objects using diagrams
in LF. First we introduce one simpli�cation of the notation. Recall that technically, the semantics
NSP of NSP is an LFH object (NSPv, NSPh) and similarly for NΣ = (NΣv, NΣh). A simple
induction will show that NΣ never contains hiding and that NSP .s : NΣv = NΣh → NSPv is an
isomorphism in LF. Therefore, we will always write NΣ instead of NΣv, NSP instead of NSPh,
and NSP .s instead of NSP .s.
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SP := (Σ, {F1, . . . , Fn})
Basic

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNSP = {%struct s : NΣ , %hide a1 : ded pF1q, . . . , %hide an : ded pFnq}

Σ = Sig [SP1] = Sig [SP2]

SP ′ := SP1 ∪ SP2

%sigNΣ = {pΣq}

%sigNSP1 = {%struct s1 : NΣ , pSP1q}

%sigNSP2 = {%struct s2 : NΣ , pSP2q}
Union

NSP ′ = {

%struct s : NΣ ,

%struct t1 : NSP1 = {%struct s1 := s}, %struct t2 : NSP2 = {%struct s2 := s}

}

σ : Σ → Σ′

SP ′ := σ(SP )

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNΣ′ = {%struct l′ : LSyn , pΣ′q}

%sigNSP = {%struct s : NΣ , pSPq}

%viewNσ : NΣ → NΣ′ = {%struct l := l′, pσq}
Transl

%sigNSP ′ = {%struct s′ : NΣ′ , %struct t : NSP = {%struct s := Nσs
′}}

σ : Σ ↪→ Σ′

dom(Σ) = {c1, . . . , cm}

dom(Σ′) \ dom(Σ) = {h1, . . . , hn}

SP := σ−1(SP ′)

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNΣ′ = {%struct l′ : LSyn , pΣ′q}

%sigNSP ′ = {%struct s′ : NΣ′ , pSP ′q}

Hide

NSP = {%struct s : NΣ ,

%struct t : NSP ′ = {%struct s′.l′ := s.l, s′.c1 := s.c1, . . . , s
′.cm := s.cm,

%hide s′.h1, . . . , %hide s′.hn}

}

Fig. 2. Translation of ASL speci�cations to LF+MMT with Hiding

NΣ

NSP

NSP .s

The rule Basic translates basic speci�cation SP = (Σ,E) using the LF rep-
resentation of the underlying institution. pΣq contains one declaration for every
non-logical symbol declared in Σ. For example, if LSyn encodes �rst-order logic and
has a declaration i : type for the universe, a binary predicate symbol p in Σ leads
to a declaration p : l.i→ l.i→ l.o in pΣq. All axioms F ∈ E, lead to a declaration
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a : ded pFq where a is a fresh name. This has the e�ect that axioms are always hidden, which
simpli�es the notation signi�cantly; it is not harmful because the semantics of ASL does not
depend on whether an axiom is hidden or visible.

NΣ NSP1

NSP2 NSP ′

NSP1 .s1

NSP2 .s2
NSP ′ .s

NSP ′ .t2

NSP ′ .t1

The rule Union assumes translations ofΣ, SP1, and SP2 and
creates the translation of SP ′ = SP1∪SP2 by instantiatingNSP1

and NSP2 in such a way that they share NΣ . The semantics of
LF+MMT guarantees that the resulting diagram on the left is
a pushout in LF.

The rule Transl translates SP ′ = σ(SP) assuming that σ
and SP have been translated already. The signature morphism
σ is translated to a view in a straightforward way. Recall that
NΣ and NΣ′ contain no hidden declarations or axioms so that

Nσ is a (total) morphism in LF. The resulting diagram is the left diagram below; it is again a
pushout in LF.

Similarly, the rule Hide translates SP = σ−1(SP ′) assuming that SP has been translated
already. As σ : Σ ↪→ Σ′ is an inclusion, we only need to know the names ci of the symbols in Σ
and the names hj of the symbols in Σ

′ \Σ, which are to be hidden. Then we can form NSP by
importing from NSP ′ and mapping all symbols that remain visible to their counterparts in NSP

and hiding the remaining symbols. The resulting diagram is the right diagram below. Note that
by Lem. 5, NSP .t extends to a total LF morphism NSP .t

∗; moreover, it is easy to verify that
NSP .t

∗ is an isomorphism.

NΣ NΣ′

NSP NSP ′

Nσ

NSP .s

NSP ′ .t

NSP ′ .s′

NΣ NΣ′

NSP NSP ′

NSP .s

NSP .t
∗

NSP ′ .s′

5.3 Adequacy for Speci�cations

The general idea of the encoding of models is given in Fig. 3. The diagram corresponds to the
one from Sect. 3.3 except that both NΣ and NSP are drawn. (NSP .s)mod arises as the unique
factorization through the pushout NMod

Σ .

Our result is that models M ∈ ModI [SP ] ⊆ ModI(Σ) are encoded as LF morphisms m :
NMod
Σ → F that factor through NMod

SP .

The translation of ASL to MMT yields pushouts between LF signatures extending LSyn ,
but models are stated in terms of signatures extending LMod . Therefore, we use the following
simple lemma:

Lemma 8. If the left diagram below is a pushout in LF, then so is the right one.
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F

LMod

LSyn

Lmod

NΣ

NMod
Σ

Nmod
Σ

NSP

NMod
SP

Nmod
SP

NSP .s

(NSP .s)
mod

F
idF

m m∗

Fig. 3. Representation of Models in the Presence of Hiding

Σ Σ1

Σ2 Σ′

σ1

σ2

τ1

τ2

ΣMod ΣMod
1

ΣMod
2 Σ′Mod

σmod1

σmod2

τmod1

τmod2

Proof. This is shown with a straightforward diagram chase.

Then we are ready to state our main result:

Theorem 9. Let I be an institution that is adequately represented in LF. Then for any signature
Σ, any ASL-structured speci�cation SP with Sig [SP ] = Σ, and any Σ-model M

M ∈ ModI [SP ] iff exists m∗ : NMod
SP → F such that (NSP .s)mod ; m∗ = pMq

Proof. The proof is done by induction on the structure of SP . All cases will refer to the corre-
sponding diagrams in Sect. 5.2.
Case SP = (Σ,E):

For the base case, the conclusion follows directly from the assumption that the representation
of I in LF is adequate.
Case SP = SP1 ∪ SP2:

Let M ∈ Mod [SP ] and m := pMq : NMod
Σ → F . We want to factor m through NMod

SP .
By de�nition, we have that M ∈ Mod [SP1] and M ∈ Mod [SP2]. By the induction hypoth-
esis for SP1 and SP2, we get that there are morphisms mi : NMod

SPi
→ F such that m =

(NSPi
.s)mod;mi. Using the pushout property we get a unique morphism m∗ : NMod

SP → F such
that (NSPi

.s)mod; (NSP ′ .ti)mod;m∗ = m which gives us the needed factorization.
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For the reverse inclusion, let m := pMq : NMod
Σ → F represent a Σ-model M and factor

as (NSP .s)mod;m∗. Notice that by composing (NSP .ti)mod with m∗ we get morphisms mi :
NMod

SPi
→ F . By using the induction hypothesis, M is then a model of both SP1 and SP2 and

by de�nition M is a model of SP .
Case SP ′ = σ(SP):

Let M ′ ∈ Mod [SP ′] and m′ := pM ′q : NMod
Σ′ → F . We want to prove that there is m′∗ :

NMod
SP ′ → F such that m′ = (NSP ′ .s′)mod;m′∗. By de�nition M ′|σ ∈ Mod [SP ′]. By induction

hypothesis for SP ′ we get a morphismm := pM ′|σq : NMod
Σ → F and a morphismm∗ : NMod

SP →
F such that (NSP .s)mod;m∗ = m = (Nσ)mod;m′, where the latter equality holds due to the
de�nition of model reduct. Using the pushout property we get the desired m′∗.

For the reverse inclusion, assumem′ := pM ′q : NMod
Σ′ → F that factors as (NSP ′ .s′)mod;m′∗.

Then (NSP .s)mod; (NSP ′ .t)mod;m′∗ factors through NMod
SP and thus by induction hypothesis the

reduct of M ′ is an SP -model, which by de�nition means that M ′ is an SP ′-model.
Case SP = σ−1(SP ′):

Let M be an SP -model and let m := pMq : NΣ → F . We want to prove that m fac-
tors through NMod

SP . By de�nition M has an expansion M ′ to an SP ′-model. By induction
hypothesis, there are morphisms m′ := pM ′q : NMod

Σ′ → F and m′∗ : NMod
SP ′ → F such that

(NSP ′ .s′)mod;m′∗ = m′. Then m = (NSP .s)mod; (NSP .t
∗−1)mod;m′∗.

For the reverse inclusion, let m := pMq be a morphism that factors as (NSP .s)mod;m∗. We
need to prove that M has an expansion to a SP ′-model. We obtain it by applying the induction
hypothesis to m′ := (NSP ′ .s′)mod; (NSP .t

∗)mod;m∗.

Corresponding to the adequacy for models, we prove the adequacy for theorems:

Theorem 10. Let I be an institution and assume that I has been represented in LF in an
adequate way. Then for any signature Σ, any ASL-structured speci�cation SP with Sig [SP ] = Σ,
and any Σ-sentence F

F ∈ ThmI [SP ] iff NSP .s(l.ded pFq) inhabited over NSP

Proof. This is proved by induction on SP . For the base case, this follows from the adequacy
assumption. For the remaining cases, it follows easily after observing that due to Lem. 5 struc-
tures always translate (possibly hidden) theorems to (possibly hidden) theorems. We omit the
details.

Finally we remark that Nnf(SP) is a �at H-signature that is isomorphic to the �attening of
NSP where nf(SP) is the normal form of SP as de�ned in [Bor02]. This can also be proved by
induction and then used to prove the above results.

5.4 Adequacy for Re�nements

NΣ

NSP

NSP ′

NMod
Σ

NMod
SP

NMod
SP ′

F
Nmod
Σ

NSP .s

NSP ′ .s

Nmod
SP

Nmod
SP ′

(NSP .s)mod

(NSP ′ .s)mod

m

m∗

m′∗

ρ

We want to give a syntactical criterion for re�ne-
ment SP  Σ SP ′. Consider the diagram on the
right. SP  Σ SP ′ states that for all m, if m′∗ ex-
ists, then some m∗ exists such that the diagram com-
mutes. Clearly, this holds if there is an LF morphism
ρ : NMod

SP → NMod
SP ′ .
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If F has some additional technical properties, we can also prove the opposite implication:

Theorem 11. Let I be an institution that is adequately encoded in LF. Moreover, assume that
(i) F can express I-models as tuples of their components, and (ii) whenever F can prove the
existence of a model of a �nite I-theory, F can also express some model of that theory.

Then for ASL-speci�cations SP and SP ′ over the signature Σ, we have that SP  Σ SP ′ i�
there is an LF morphism ρ : NMod

SP → NMod
SP ′ such that (NSP .s)mod; ρ = (NSP ′ .s)mod.

Proof. The right-to-left implication follows immediately using Thm. 9.
For the left-to-right implication, we assume SP  Σ SP ′ and work within NMod

SP ′ . Due to the
adequacy of F , pSP  Σ SP ′q is a provable statement of F and thus of NMod

SP ′ (iii). Using (i),
we can tuple the declarations in NMod

SP ′ \ F (excluding the axioms) and obtain a Σ′ model m as
a term over F ; using the axioms in NMod

SP ′ \F , we can prove that m′ is an SP ′ model. Using (iii),
we show that m is also an SP model. Then using (ii), we obtain an expression m∗ over NMod

SP ′

that expresses a model of NSP ′ . Finally, using (i), we can project out the components of m∗.
The morphism ρ maps every symbol of NMod

SP \ F (excluding the axioms) to the corresponding
components; it maps all axioms to proofs about m∗.

The assumption (i) of this theorem is mild. In fact, if (i) did not hold, it would be dubious
how the foundation can express institutions and models at all. The assumption (ii) is more
restricting. It holds for example in foundations that have a choice operator such as ZF with
global choice function or higher-order logic. It is also possible to establish (ii) for individual
institutions by giving a constructive model existence proof.

6 Conclusion

With the translation presented in this paper, it is possible to encode ASL- and CASL-style
structured speci�cations with hiding in proof theoretic logical frameworks. This provides a
new perspective on structured speci�cations that emphasizes constructive and mechanizable
notions. Our translation is given for MMT-structured LF, but it easily generalizes to other
MMT-structured logical frameworks.

Our encoding can be generalized to speci�cations given as development graphs. In this
context, our representation theorem for re�nements can be strengthened to represent the hiding
theorem links of [MAH06]. Even heterogeneous speci�cations [MT09,MML07] can be covered.
As LF+MMT uses the same structuring operations for logics as for theories, this requires only
the representation of the involved logics and logic translations in LF.

A theorem very similar to our representation theorem for re�nements can be obtained for
conservative extensions. This permits the interpretation of the proof calculus for re�nement
given in [Bor02]. In particular, the rules using an oracle for conservative extensions can be
represented elegantly as the composition of LF signature morphisms.

The translation to MMT also has the bene�t that we can re-use the infrastructure provided
by languages like OMDoc [Koh06] (an XML-based markup format for mathematical documents)
and tools like TNTBase [ZK09] (a versioned XML database for OMDoc documents that supports
complex searches and queries, e.g., via XQuery). Further tools developed along these lines are
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the JOBAD framework (a JavaScript library for interactive mathematical documents), which
will provide a web-based frontend for the Heterogeneous Tool Set, GMoc (a change management
system), DocTip (a document and tool integration platform) and integration with the Eclipse
framework (an integrated development environment).
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