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Abstract. We have formalized material from an introductory real analysis text-
book in the proof assistant Scunak. Scunak is a system based on set theory en-
coded in a dependent type theory. We use the formalized material to illustrate
some interesting aspects of the relationship between informal presentations of
mathematics and their formal representation. We focus especially on a represen-
tative example proved using the system.

1 Introduction

In recent decades, a large amount of mathematics has been formalized in different log-
ical systems using various computer programs. Still, the mathematics that has been
formally represented and verified using computers is a tiny percent of the mathemat-
ics that has been informally written and published as books and papers. If this infor-
mally presented mathematical knowledge is to be transformed into formal versions in
mechanized systems, then we must better understand the relationships between the two
versions. In order to study the gap between informal and formal representations, we
have formalized some material from Bartle and Sherbert’s introductory textbook on
real analysis [2]. This particular textbook has been studied in the context of formal-
ized mathematics already. In particular, a linguistic analysis of portions of [2] is given
in [3]. Likewise, an example from the first chapter of [2] is considered in [1] and [8].
We formalized the material in Scunak [5,6], a system based on set theory encoded into
a dependent type theory.

In the next section, we will introduce the type theory of Scunak. In Section 3, we
discuss the formalization of material from the textbook [2]. In Section 4, we focus on
one small example from [2] (the limit of the sequence 1√

n
is 0). We have encoded

this example in ISABELLE-HOL [12] and MIZAR [14], and we briefly compare the
encodings.

2 Preliminaries

We present the mathematical proof assistant Scunak [5,6]. Scunak is based on set theory
formalized in a logical framework with dependent types and proof terms. The system is
relatively new and has been under development since 2005.

Scunak offers several functionalities to its users.
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– It provides an environment in which one can formalize mathematics from a set-
theoretical foundation.

– Like several other proof assistants such as Coq [4], Scunak allows its users to inter-
actively construct proofs (technically “proof terms”) using the Scunak Interactive
Prover (Scip).

– Scunak can be used as a tutor (Scutor, for a demonstration see [7]) that gives feed-
back to a user on his proof attempts in an arbitrary state of the proof.

– Scunak can be used for verifying textbook proofs through a process of translating
the LATEX representation of informal proofs into a proof term that can be understood
and checked by Scunak. A detailed description of the process is given in [8].

In this paper, we focus on the relationship between informal mathematical texts and
the formal versions in Scunak. Functionalities of Scunak like Scutor and Scunak’s ver-
ification component for textbook proofs are beyond the scope of this paper.

2.1 The Scunak Type Theory

The type theory of Scunak is dependent type theory with proof irrelevance. A general
frame in which proof irrelevance is discussed can be found in [13]. We briefly give the
syntax for the type theory of Scunak.

We assume a countably infinite set of variables and use x to range over this set. In
addition to variables, we also assume a countably infinite set of names and use c to
range over this set. Names will be used to declare constants, abbreviations and claims
in a signature.

The set of terms and types are given inductively as follows:

Terms p, r, s, t, φ, ρ . . . := x|c|(λx.s)|(s t)|〈s, ρ〉|π1(t)|π2(t)
Types S, T, S1, T1 . . . := obj|prop|(pf p)|(classφ)|(Πx : S. T )

We often omit parenthesis if it is clear in context where they are missing. A context
Γ is an ordered list of variables associated with types. We sometimes speak of a term t
having a type T (in a context Γ ), and we write t : T (or Γ � t : T ). For the definitions
of these notions see [5,9].

Often, we will be discussing a particular object of mathematical discourse such as a
set A or a sequence X . During such a discussion we may use a corresponding term A
and X. In each such case, the implicit assumption is that the term (e.g., A) corresponds
to the object of discourse (e.g., A).

We describe the types of Scunak below.

– obj is the type of all mathematical objects. In set theory it is very common to
consider any mathematical object as a set. Scunak reflects this idea by having a
synonym set for the basic type obj.

– prop is the type of all propositions.
– Proof types: pf p is the type of (all) proofs of the proposition p. Note that pf p

is empty if p is unprovable. Proof types are a form of dependent types since they
depend on propositions.



Formal Representation of Mathematics in a Dependently Typed Set Theory 267

– Class types: These are types that correspond to the class {x|φ(x)} where φ(x) is
a proposition depending on a mathematical object x. Such types are called class
types and they depend on predicates φ. An inhabitant of a class type classφ is a
pair term 〈s, ρ〉, where φ : obj → prop is a predicate, s : obj is a mathematical
object and ρ : pf (φ s) is the proof of the proposition (φ s). Note that without proof
irrelevance, there could be more than one proof of (φ s), and hence more than one
representative of type pf (φ s).

– Π-types: The remaining types in Scunak are the dependent Π-types, which are
generalizations of simple function types. We write S → T for Πx : S. T if x does
not occur in the output type T .

One represents a formal mathematical theory in Scunak by giving a signature Σ
which is a list of constants, abbreviations and claims. We describe each of these below.

– A constant is specified by a name c and a type S. A constant corresponds to a basic
constructor or axiom of the theory.

– An abbreviation is specified by a name c, a type S and a term t. An abbreviation
corresponds to a defined constructor or a proved theorem.

– A claim is specified by a name c and a type S. A claim corresponds to a constructor
we intend to define, or a proposition we intend to prove. In essence, claims are
constants which should become abbreviations in a later version of a signature.

Scunak uses type checking to ensure signatures are declared in a valid manner.

2.2 Mac Lane Set Theory in Scunak

The current version of Scunak provides a variety of set theories, including a theory of
hereditarily finite sets (see [6]), forms of Mac Lane set theory (see [5]) and a form of
Zermelo-Fraenkel set theory with axiom of choice (ZFC, see [9]). Each set theory is
given as a signature in the type theory which can be loaded as a “kernel.” The user can
choose the appropriate set theory by loading the corresponding kernel.

We have worked in a set theory that is a form of Mac Lane set theory with uni-
verses, the axiom of choice and foundation (MACU). One of the first set theories
implemented in Scunak was Mac Lane set theory with universes, but without choice or
foundation (MU). The signature corresponding to MU is given in [5]. Aside from the
fact that MACU includes choice and foundation (adding two constants), the formu-
lation of universes in the two theories are different (removing two constants). Both the
signature for MU and MACU consist of 29 constants. A description of Mac Lane set
theory can be found in [11].

We briefly mention the constants used to construct propositions and set theoretical
concepts.

There are three constants in the signature for propositions. There is a constant for the
logical connective ¬, which is the only logical connective represented by a constant.
There are two constants for the basic relations = and ∈ in set theory.

Six constants are defined in the signature for constructors corresponding to the fol-
lowing axioms of MACU.
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– Axiom of empty set: There is a set ∅ containing no elements.
– Axiom of separation: Given any set A and any property φ, there is a set of elements

x of A (a subset of A) for which φ(x) holds.
– Axiom of power set: For any set A, there is a set P(A) (the power set of A) such

that the elements of P(A) are exactly the subsets of A.
– Axiom of union: For any set A, there is a set

⋃
A such that if x ∈

⋃
A, then there

is an element y ∈ A such that x ∈ y.
– Set adjoin: For two sets A and B, {A} ∪ B is a set.
– Universes: For any set A, there is a set Univ(A) which contains A, is transitive,

and is closed under power set. (Note that Univ(∅) must be an infinite set.)

The remaining constants correspond to deduction rules for the basic set theory [5],
as well as choice and foundation.

The other logical connectives and set theoretical notions are given as abbreviations
from the constants mentioned above (see [6] for a presentation of the derivations).

2.3 A Modular Treatment of the Real Numbers

If one is formalizing mathematics within a foundational framework, then one must face
the question of how to treat the real numbers. Fundamentally, the question is whether
the real numbers should be constructed or axiomatized. In Scunak, we want all our
mathematical content to be reduced to the basic foundational axioms. To obtain this
goal, we could construct a signature with three sections:

1. Set Theory Intro: Axioms of set theory and basic set theoretic constructions
2. Constructing the Reals: A construction of the reals
3. Real Analysis Intro: Results from real analysis

Such a signature would guarantee that all our results can be traced back to the original
axioms of set theory.

Our primary goal, however, was to follow the textbook [2], we note carefully how
the authors introduce the reals in the first paragraph of Chapter 2 of [2]:

In this chapter we shall discuss the essential properties of the real number system
R. Although it is possible to give a formal construction of this system on the basis
of a more primitive set (such as the set N of natural numbers or the set Q of rational
numbers), we have chosen not to do so. Instead, we exhibit a list of fundamental
properties associated with the real numbers and show how further properties can
be deduced from them.

Bartle and Sherbert are quite explicit that they are not constructing a set of reals. How-
ever, they also refer to “the” real number system R, indicating that they have a real
number system R already. How should this be reflected in the formalized version?

We decided to construct a signature of the following form:

1. Set Theory Intro: Axioms of set theory and basic set theoretic constructions
2. Claiming the Reals: Claims corresponding to the real number system
3. Real Analysis Intro: Results from real analysis



Formal Representation of Mathematics in a Dependently Typed Set Theory 269

The claims in the second section would behave like basic constants and axioms, but
could be later given definitions. The idea was that using claims would force the real
analysis section to be independent of the construction of the reals (as in the textbook).
This approach enforces a level of modularity between sections. The second section
could be replaced by different constructions of the reals so long as the types of the
claims corresponding the the real number system are the same.

In addition to the independence of the real analysis section on the construction of the
reals, we found that the real analysis section was largely independent of the underlying
set theory as well. In particular, while we choose to use MACU as the underlying
set theory, after encoding the mathematical content it became clear that the axioms of
choice and foundation were never used.1 In fact, since we are working with a claimed set
of reals, we do not even need an axiom of universes (or any axiom of infinity). Without
difficulty, one can change the underlying set theory to be MU, MACU, ZFC or even
a theory of hereditarily finite sets. Note that if the underlying set theory is a theory of
hereditarily finite sets, then there is no hope of constructing the real numbers; they must
remain open claims in this case.

3 How Does the Scunak Type Theory Reflect Informal
Mathematics?

Informal presentations of mathematical knowledge in textbooks are untyped, but their
formal versions in most mechanized systems for mathematics correspond to typed rep-
resentations. We illustrate how the informal presentation of mathematics we have taken
from [2] is reflected formally in Scunak by identifying several properties we observe in
the formal version as consequences of the Scunak type theory.

3.1 Syntax

We briefly mention the concrete syntax employed for the examples we present in this
paper. The conrete syntax used for terms and types is PAM (Pseudo-Automath) syn-
tax [6]. The PAM syntax provides human-readable forms of notation to denote several
mathematical operators using a combination of infix notation and special binder nota-
tion. We will use the typewriter font to present material formalized in PAM syntax.

The symbol :: is an infix notation for the constant in that represents the membership
relation ∈ of sets.

The PAM syntax for the λ-binder is \. For convenience we also include some special
forms for binders encoded as constants or abbreviations. The PAM syntax for the proof
type pf p is |- p.

Given a set A and a property φ, we have the constant

dsetconstr : ΠA : obj. Πφ : (class (inA) → prop).obj

corresponding to the Axiom of Separation. Given a set A and a proposition P (x) which
depends on an element x of A, the term (dsetconstrA (λx .P)) corresponds to the

1 We should note, however, that some lemmas were left as open claims. It is possible, though
unlikely, that some of these lemmas might require choice or foundation.
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subset {x ∈ A|P (x)} of A. One can write this as (dsetconstr A (\x.P)) in PAM
syntax. PAM syntax also includes the syntactic sugar {x:A|P} for such a term.

Quantifiers are handled in a similar way. The quantifiers derived in the kernel of
MACU are bounded quantifiers. That is, they are bounded to certain domains (sets)
and have the form ∀x ∈ A. P (x), ∃x ∈ A. P (x) for a set A and a property P (x)
depending on an element x in A. The abbreviations corresponding to the bounded uni-
versal and the existential quantifiers have the names dall and dex and have the type
ΠA : obj. (class (inA) → prop).prop.

In PAM syntax, one can write (forall x:A . P) and (exists x:A . P) as
syntactic sugar for (dallA (λx.P)) and (dexA (λx.P)) for a term P with type prop.

After claiming the set of reals and defining the ordering relation on the reals, the
symbol > is given as infix notation for the formal version of the ‘greater than’ operator.

In order to aid readability, we will sometimes mix notations in the discussion below.
Also, we sometimes mention a “type” and give PAM syntax, by which we mean the
type specified by the given PAM syntax.

We add variables to a context by giving the variable name, a colon, and a PAM spec-
ification of the type, all surrounded by brackets. For example, if we want to introduce a
set A into the context, we actually introduce a variable A of type set into the context
using the PAM syntax [A:set].

3.2 Sets as Types

In the Scunak type theory, the notion of set is represented by the basic type set, which
is a synonym for the basic type obj of all mathematical objects.

When we formalize mathematics in Scunak we quite often use sets as types of certain
terms, in particular, when we work with elements of sets. For example, consider a set A
and an element x of A. We can represent these objects in Scunak by declaring variables
A and x to have certain types in a context. We declare this in PAM syntax as follows:
[A:set][x:A].

The type of x is class (inA). Intuitively, this corresponds to the fact that x belongs
to the class of objects that are in the set A. The class type class (inA) is often written
as A in PAM syntax leaving out class and in. This allows any set to be used as the
“type” of its elements.

Note that the above representation of x ∈ A uses dependent types. The type of
x depends on the variable A. This representation is quite compact compared to the
representations of simple type systems, since the information x ∈ A is contained in the
type of x. In simply typed systems one is required to either assume A is the simple type
of x or add the information (x ∈ A) into the formalizations usually as the antecedent of
an implication ((x ∈ A) ⇒. . . ). This means, one carries x ∈ A as an extra information
in the formalizations.

We now discuss some examples that demonstrate the use of sets as types in the
material we have formalized in Scunak.

Fig. 1 shows the definition of the notion of a lower bound of a set of real numbers
taken from [2] and its corresponding formal representation in Scunak in PAM syntax.

A real number w is represented as an object that is in the set R of real numbers as
[w:R], where R denotes the set of real numbers we have claimed in Scunak.
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A subset S of R is represented as an object that is an element of the power set of R, in
PAM syntax as [S:(powerset R)]. Here powerset is the PAM version of the con-
stant named powerset with type obj → obj in the kernel of Scunak corresponding
to the axiom of power set.

realLowerBoundOf and realLeq are the formal versions of a lower bound of a
set and the relation ≤. They inhabit the types (powerset R) -> R -> prop and
R -> R -> prop, respectively.

Note that the bound variable s in (forall s:S . (realLeq w s)) has the type
S, whereas realLeq expects two arguments of type R. Scunak uses a special type con-
version mechanism to type-check the application of realLeq w to s. We discuss the
mechanism in Section 3.3.

Type Refinement using the Axiom of Separation. As we mentioned earlier, the Ax-
iom of Separation is encoded in Scunak. Here we show how one can use the encoding
to give refined types. Given a set A and a property φ, we can form the set {x ∈ A|φ(x)}
and use this as a refined version of the type corresponding to A.
A : set
φ : (class (inA)) → prop
x : class (in {x ∈ A|(φx)})

This style of type refinement corresponds to linguistic specifications in informal
mathematical texts. For example, “a lower bound w” as stated in Fig. 2 taken from
the definition of an infimum of a set of real numbers in [2] is a linguistic specification
of a real number that has the property of being a lower bound of a set S of real num-
bers. The formal version in Fig. 2, uses separation to reflect the informal specification
by refining the type R of real numbers with the relation realLowerBoundOf. The re-
sulting type {x:R|(realLowerBoundOf S x)} is the type a variable representing a
real number w that is a lower bound of a set S of real numbers.

In MIZAR, there is an alternative type refinement mechanism that uses MIZAR “at-
tributes” (see [15]) to represent such linguistic specifications in textbooks.

In ISABELLE-HOL, one can employ a type definition mechanism rather than type
refinements for the presentation of these specifications. For example, a simple type α
and a closed, nonempty predicate φ on α can be used to define the type, say γ, of terms
for which the property φ holds. Along with the definition, there is usually a function
that serves the purpose of an explicit type conversion between α and γ.

Type refinement using the Axiom of Separation does not require a function for the
explicit conversion of type class (in {x ∈ A| (φx)}) to type class (inA). The con-
version is performed implicitly by means of certain inference rules in the kernel of

Definition. Let S be a subset of R. A number w ∈ R is said to be a lower bound of S if w ≤ s
for all s ∈ S.

[S:(powerset R)]
[w:R]
(realLowerBoundOf S w):prop=(forall s:S . (realLeq w s)).

Fig. 1. An Example of Using Sets as Types
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Scunak. By means of this implicit type conversion, the application of the infix operator
>, which expects two arguments of type R, to the terms w and v, which have the refined
type {x:R|(realLowerBoundOf S x)}, type-checks.

3.3 Type Conversions

From everyday programming languages like C/C++, we are familiar with the notion of
implicit type conversions, also known as coercions, used for converting numeric types
(like the type int of integers and float of floating numbers). The general idea of type
conversions is that a variable of a certain type is forced to behave as if it has another
type. This means, if a type S is coerced to another type T , then any term that expects a
member of T can accept an argument that is a member of S.

Scunak does not have numeric types. Numbers are members of class types. For in-
stance, N and R are PAM notation for the sets N of natural numbers and R of real
numbers, respectively. Hence N and R can be used as the types of natural numbers and
real numbers. This means, there are distinct types for numbers in Scunak. Nevertheless,
one can naturally expect a natural number to behave as a real number (since N ⊆ R and
thus a natural number is a real number). In other words, one technically expects a term
with type N to behave as if it has type R. Scunak has a type conversion mechanism for
subsets of sets (like N of R). We describe the mechanism below.

Suppose there are two sets A and B with the property B ⊆ A. Given two corre-
sponding terms A and B, the type class (inB) can be converted to type class (inA)
if there is a proof of the property B ⊆ A (i.e, if there is a term ρ with type pf (B ⊆ A)).
The conversion requires an explicit statement in the presence of a proof of B ⊆ A in
the formalizations. The statement needs to be declared only once. Then, in any future
formalization, any term that expects arguments corresponding to elements of A can be
applied to terms corresponding to elements of B without violating type checking. One
should note that the type conversion do not affect the resulting type of an application.

Arithmetical operators such as addition, subtraction, multiplication are given for real
numbers and their application to elements of subsets of R (like naturals, integers, ra-
tionals, etc.) is handled through converting the types of elements of subsets of R to the
type of real numbers. The definitions of arithmetical operators are not overloaded for
each distinct type of numbers.

Definition. Let S be a subset of R. If S is bounded below, then a lower bound w is said to be
an infimum (or a greatest lower bound) of S if no number larger than w is a lower bound of
S.

[S:(powerset R)]
[w:{x:R|(realLowerBoundOf S x)}]
(realInfimum S w):prop=
(not (exists v:{x:R|(realLowerBoundOf S x)} .

(v > w))).

Fig. 2. An Example of Separation in Scunak
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3.4 Pair Terms

Pair terms are inhabitants of class types. In the formalizations, pair terms are frequently
used to address type checking issues in the case of no available type conversion proce-
dures. The type conversion procedure we have discussed in Section 3.3 is a special case
used to convert class types induced by the predicate (inA) for a set A. Currently, the
only general way to convert a term of a class type or of type obj to another class type
is by using pairs as we will describe below.

Suppose a term x of type classφ is expected to behave as a member of type classψ
for predicates φ and ψ. If one can prove that the term x (as an object) satisfies (ψ x),
then the proof can be used to construct a pair term of type classψ, which can be given
as an argument to a term t that expects a member of the latter type.

Technically, x : classφ is (judgmentally) the same as a pair term 〈π1(x), π2(x)〉
with π1(x) : obj and π2(x) : pf (φπ1(x)). The first projection π1(x) of the pair is
the object representation of x. If one can prove that (ψ π1(x)) holds, then the proof
ρ : pf (ψ π1(x)) can be paired together with π1(x) and the resulting pair term has the
type expected by t. In PAM syntax, π1 and π2 are not written down explicitly.

If a term x with type obj is expected to behave as a member of a class type, say
classφ for a predicate φ, then x is paired together with the proof of the proposition
(φx).

An instance of using pair terms in the formalizations in Scunak is the case, where a
member of type class (inB) is expected to behave as if it has type class (inA), but
we do not have a proof that B ⊆ A holds. In this case, the explicit conversion of types in
Scunak (as we have mentioned in Section 3.3) cannot be applied, since the conversion
is specific to sets A and B for which B ⊆ A holds. We use pair terms like in the general
case above. The proof we are looking for is that the object representation of the term
with type class (inB) is an element of the set A.

3.5 Representation of Functions

In Scunak, functions are represented as objects that are functional binary relations on ar-
bitrary sets. This means, an element of the relation’s domain is associated with a unique
element of the relation’s range. The encoding of this representation is presented in [6]
by introducing the kernel constants func, ap and lam with their formal definitions.
They respectively serve the purpose of declaring functions, applying functions to their
arguments and specifying functions.

We briefly mention how these constants are used. A function f from the set A to the
set B can be represented as a member of the class of objects that are functions from A to
B. For an element a of A the function application f(a) is represented as (apAB f a),
where A, B have type set, f has type class (funcAB) and a has type class (inA).
The type of (apAB f a) is class (inB). If t is a term which has type class (inB)
when x is a declared variable with type class (inA), then (lamAB (λx.t) ) has type
class (funcAB) and represents the λ-abstraction that takes an element of the set A
and returns an element of the set B.

An alternative way to work with functions in Scunak is to use the notion of a set of
functions represented by the kernel constant funcSet : obj → obj → obj, which
takes two objects (sets) A and B, and returns the set of functions from A to B.
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Given two sets A and B, we can represent a function f from A to B using funcSet
by declaring variables A, B and f as follows:
A : set
B : set
f : class (in (funcSetAB))
where (in (funcSetAB)) is a predicate that takes a term and checks whether it is in
the set of functions from A to B. In PAM syntax, we write [f:(funcSet A B)].

For declared variables A and B with type set, the semantic interpretation of both a
term with type class (funcAB) and a term with type class (in (funcSetAB)) is
the same: A function from the set A to the set B.

The corresponding function application and λ-abstraction operators for funcSet are
ap2 and lam2 with the following types respectively.
ΠA : set.ΠB : set.class (in (funcSetAB)) → class (inA) → class (inB)
ΠA : set.ΠB : set.(class (inA) → class (inB)) → class (in (funcSetAB))

The use of ap2 and lam2 is similar to that of ap and lam. For terms A : set,
B : set, f : class (in (funcSetAB)), a : class (inA) and x : class (inA),

– (ap2AB f a) represents an element f(a) ∈ B for a ∈ A,
– (lam2AB (λx.t)) represents a function f determined by f(x) = t for x ∈ A.

Sequences As a special case of working with functions in Scunak, we present the for-
malization of the notion of sequences. Fig. 3 shows the informal definition of a sequence
of real numbers taken from [2] and its formal representation in Scunak.

We first formalize a general notion of sequences. Given an arbitrary set A, a sequence
in the set A is a function from the set N of natural numbers to A. We define a set
constructor called sequenceIn that takes a term corresponding to a set A and returns
the set of functions from N to A using the constant funcSet.

Definition. A sequence of real numbers (or a sequence in R) is a function on the set N of
natural numbers whose range is contained in the set R of real numbers.

[A:set]
(sequenceIn A):set=(funcSet N A).
notation RSeq (sequenceIn R).
[X:RSeq]

Fig. 3. Sequences

We instantiate sequenceIn with R to yield the set of functions from N to R, which
we denote as RSeq. Since a sequence in R is a member of the set represented by RSeq,
we can use RSeq as the type of a sequence in R as [X:RSeq] in PAM syntax.

We define the value of a sequence at index n ∈ N using ap2. The value of a sequence
at index n is the value obtained when the sequence, as a function, is applied to n.
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[X:(sequenceIn A)]
[n:N]
notation XinfuncSetNA (sequenceIn#U A (\x.(X::x)) X).
(valueAt A X n):A=(ap2 N A <X,XinfuncSetNA> n).
notation subA (valueAt A).
notation sub (valueAt R).

The term valueAt takes terms representing a set A, a sequence in A and a nat-
ural number n, and returns a term representing the value of the sequence at index
n. The pair term in the definition is to ensure that (ap2 N A) is applied to an argu-
ment with the expected type (funcSet N A). The type of a sequence in R is in PAM
syntax (sequenceIn R), which is not the type expected by (ap2 N A). The PAM
term (sequenceIn#U A (\x.(X::x)) X) is the proof that the context variable X

is in the set of functions from N to A. We obtain the proof by unfolding the defini-
tion of sequenceIn. For readability, we declare XinfuncSetNA as notation for this
proof.

The last component we need in order to be able to work with sequences is a sequence
constructor and we define it using lam2.

[A:set]
[f:N -> A]
notation lam2NAf

(sequenceIn#F A (\x.((lam2 N A f)::x)) (lam2 N A f)).
(sequenceconstr A f):(sequenceIn A)=<(lam2 N A f),lam2NAf>.

The abbreviation sequenceconstr takes a term representing a set A and a meta-
level function with type N -> A and gives back a term corresponding to a sequence
in A that is determined by the meta-level function. Note (lam2 N A f) has the type
(funcSet N A). lam2NAf is a notation that stands for the proof that the object-level
λ-abstraction (lam2 N A f) is a sequence in A. We use lam2NAf to obtain a term of
type (sequenceIn A).

4 A Case Study

After presenting the Monotone Convergence Theorem, Bartle and Sherbert give a num-
ber of examples which use the Monotone Convergence Theorem. We present the for-
mal version of the first of these examples: lim ( 1√

n
) = 0. The proof in [2] essen-

tially consists of one sentence. The statement and short proof from [2] are shown in
Fig. 4.

Example. lim ( 1√
n
) = 0.

Proof. Clearly, 0 is a lower bound for the set { 1√
n

: n ∈ N}, and it is not difficult to show that

0 is the infimum of the set { 1√
n

: n ∈ N}; hence 0 = lim ( 1√
n
).

Fig. 4. An Example on Sequences
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The formalization of the example is divided into the following parts:

– Formalization of necessary notions and theorems the example uses in its statement
and proof in a PAM document

– An analysis of the informal proof to generate underspecified lemmata and their
formalization

– Formalization of the mathematical statement of the example in a PAM file
– Formalization of the proof interactively in Scip

The underlying notions used in the example are the notions of a lower bound and
an infimum of a set (of real numbers), sequences, the limit of a sequence, decreasing
sequences, the square root function, the underlying set of a sequence, and the Monotone
Convergence Theorem. Once these preliminaries are given, we give claims correspond-
ing to the steps of the proof and then the final result.

The notions of a lower bound and an infimum of a set (of real numbers), and se-
quences are introduced in Sections 3.2 and 3.5. We have formalized the notion of the
limit of a sequence and decreasing sequences as a term lim:RSeq -> R -> prop

that takes a sequence of real numbers and a real number, and checks whether the pro-
posed number is the limit of the given sequence, and decreasing:RSeq -> prop

that takes a sequence of real numbers and checks whether the given sequence is de-
creasing. Whenever X is of type RSeq, then (RSeqSet X) (of type set) is defined to
be the underlying set of the sequence X. The term RSeqSetSubsetReals abbreviates
a proof that for any X of type RSeq, the underlying set (RSeqSet X) is in the power
set of the reals.

Given the notions of limit and decreasing, we can represent the Monotone Conver-
gence Theorem in PAM syntax as shown in Fig. 5. We explain Fig. 5 by giving the same
information in natural language:

X: Let X be a sequence of reals.
v: Assume X is decreasing.
a: Let a be a real number.
apf: Assume a is a lower bound of the underlying set of X .
w: Assume a is an infimum of the underlying set of X . (Note that we cannot assert that

a is an infimum unless we know it is a lower bound.)
monotoneConvTheo-b-2: The Monotone Convergence Theorem implies the limit of

X is a.

The example we will consider is shown in PAM syntax in Fig. 6. We begin by ex-
plaining the notation. The symbol X is declared as notation for the sequence 1√

n
. Note

that n is bound in this expression. This is reflected by the fact that n is λ-bound in
the term (\n.(1/ <(sqrt n),(sqrtNatInR-0 n)>)) which has type N -> R (in
PAM syntax). seqconstr takes this term of function types and creates a term of type
RSeq. We next declare S to be notation for the underlying set of X. We declare SPR as
notation for a term proving S is in the power set of the reals. Finally, we declare notation
LB for the set of lower bounds of the set S of reals.

Using this notation, we can represent the facts asserted in the proof of the exam-
ple. Two facts are stated explicitly in the proof: 0 is a lower bound and 0 is an in-
fimum. These two facts are represented as the claims bs-example-3-3-3a-1 and
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[X:RSeq]
[v:|- (decreasing X)]
[a:R]
[apf:|- (a::{x:R|(realLowerBoundOf

<(RSeqSet X),(RSeqSetSubsetReals X)> x)})]
[w:|- (realInfimum

<(RSeqSet X),(RSeqSetSubsetReals X)>
<a,apf>)]

(monotoneConvTheo-b-2 X v a apf w):|- (lim X a)?

Fig. 5. Formalization of Monotone Convergence in Scunak

bs-example-3-3-3a-2 in Fig. 6. These two claims are essentially lemmas we com-
mit to proving at some later time. Note that since the definition of infimum requires
knowing that the element is a lower bound, the fact that 0 is a lower bound (as witnessed
by the claim bs-example-3-3-3a-1) is used in the type of bs-example-3-3-3a-2.
One of the premisses of the Monotone Convergence Theorem is that the sequence is
monotone (in this case, decreasing). While the text does not explicitly say the sequence
1√
n

is decreasing, we include this as a third claimed lemma bs-example-3-3-3a-3.
Finally, we declare a claim bs-example-3-3-3a corresponding to the main result.

notation X
(sequenceconstr R (\n.(1/ <(sqrt n),(sqrtNatInR-0 n)>))).

notation S (RSeqSet X).
notation SPR (RSeqSetSubsetReals X).
notation LB {x:R|(realLowerBoundOf <S,SPR> x)}.

bs-example-3-3-3a-1:|- (0::LB)?
bs-example-3-3-3a-2:
|- (realInfimum <S,SPR> <0,bs-example-3-3-3a-1>)?

bs-example-3-3-3a-3:|- (decreasing X)?
bs-example-3-3-3a:|- (lim X 0)?

Fig. 6. Formalization of the Example in Scunak

After Scunak has read the PAM file containing the information in Figs. 5 and 6, our
goal changes to obtaining a proof term for the main result bs-example-3-3-3a. One
way to give the proof is simply as a proof term. Since we have given names to the steps
of the proof, such a proof term is small (but not enlightening):

(monotoneConvTheo-b-2 X bs-example-3-3-3a-3 0

bs-example-3-3-3a-1 bs-example-3-3-3a-2)

Another way to give the proof is to construct it in Scip. A Scip session which con-
structs the proof is given in Fig. 7. This corresponds more closely to the text. We begin
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the Scip session with a “use” which lists the known facts we can use in the proof. In our
case, we list the Monotone Convergence Theorem along with the claimed steps of the
proof. Now we can construct the proof by giving three “facts.” First, 0 is a lower bound
of { 1√

n
: n ∈ N}. Second, 0 is an infimum of { 1√

n
: n ∈ N}. Note that these two

statements correspond directly to the statements given in the textbook proof in Fig. 4
and to the claims given in Fig. 6. The third fact is that the sequence is decreasing. We
end the proof by giving the Scip command d, indicating that the proof is done. Essen-
tially, we have stated all the steps in the proof in the PAM file and we have then used
Scip to appropriately combine them into a proof term.

prove bs-example-3-3-3a
use bs-example-3-3-3a-1 bs-example-3-3-3a-2

bs-example-3-3-3a-3 monotoneConvTheo-b-2
fact (0::LB)
fact (realInfimum <S,SPR> <0,fact0>)
fact (decreasing X)
d

Fig. 7. Construction of the Proof in Scip

We have also experimented with this example in Isabelle-HOL [12] and Mizar [14].
We mention two interesting points.

The first point regards the use of dependent types to state definitions and theorems
in a manner as close as possible to the text. In particular, we used the (dependent) type
of lower bounds of S in the definition of infimum. In Isabelle-HOL, the restriction to
simple types prevented us from using types. Instead, one must ignore such restrictions
on arguments when defining concepts such as infimum and include the restrictions as
premisses when formulating theorems. In Mizar one can define such dependent types,
but only if they are nonempty. The most satisfying way we found to define such a type
in Mizar was to assume S is a “bounded below subset of reals” when defining the type
of lower bounds of S.

The second point regards the binding mechanism for the n in the sequence 1√
n

. One
can easily give the sequence as a λ-term in Isabelle-HOL. We had difficulty trying to
find an appropriate binding mechanism in Mizar.

In Mizar’s library, the notion of a sequence of reals is represented by the mode
Real_Sequence which is defined in terms of functions from naturals to reals [10].
One can easily use Mizar’s func definition mechanism to define a unary constructor
named seq333a which expects a natural number n and returns a real number 1√

n
.

However, this does not yield the desired member of Real_Sequence. In the end, we
formulated the example in Mizar by stating that if X is a real sequence and for all n, Xn

is 1√
n

, then the limit of X is 0. Essentially this uses the universal quantifier as the binder,
but leaves implicit the fact that the hypothesis determines a unique sequence X . Later,
Krzysztof Retel pointed out that we could have used the func definition mechanism to
define a nullary constructor named seq333a which has type Real_Sequence.
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5 Conclusion

We have demonstrated that mathematical content informally represented in a textbook
can be given a precise formal representation in Scunak. Especially useful aspects of
Scunak include using sets as types, type conversions for subsets, and the handling of
binding constructors (e.g., for binding n in the sequence 1√

n
). However, some aspects

of the formal versions in Scunak were problematic. First, sometimes we needed to ex-
plicitly include proof objects in terms (as the second part of a pair of class type) for the
purposes of type checking. A mechanism allowing users to leave out such proof objects
(by looking them up somehow, not by performing proof search) would be helpful. Sec-
ond, writing proofs as proof terms does not give a very human-readable (or “natural”)
representation of proofs. A MIZAR-style of proof presentation would be preferable. Es-
sentially one would need a “compiler” which translates MIZAR-style proofs into Scunak
proof terms. We leave such improvements as future work.
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