
Notations for Living Mathematical Documents

Michael Kohlhase and Christine Müller and Florian Rabe

Computer Science, Jacobs University Bremen
{m.kohlhase,c.mueller,f.rabe}@jacobs-university.de

Abstract. Notations are central for understanding mathematical dis-
course. Readers would like to read notations that transport the meaning
well and prefer notations that are familiar to them. Therefore, authors
optimize the choice of notations with respect to these two criteria, while
at the same time trying to remain consistent over the document and their
own prior publications. In print media where notations are fixed at pub-
lication time, this is an over-constrained problem. In living documents
notations can be adapted at reading time, taking reader preferences into
account.
We present a representational infrastructure for notations in living math-
ematical documents. Mathematical notations can be defined declara-
tively. Author and reader can extensionally define the set of available
notation definitions at arbitrary document levels, and they can guide
the notation selection function via intensional annotations.
We give an abstract specification of notation definitions and the flexible
rendering algorithms and show their coverage on paradigmatic exam-
ples. We show how to use this framework to render OpenMath and
Content-MathML to Presentation-MathML, but the approach extends
to arbitrary content and presentation formats. We discuss prototypical
implementations of all aspects of the rendering pipeline.

1 Introduction

Over the last three millennia, mathematics has developed a complicated two-
dimensional format for communicating formulae (see e.g., [Caj93,Wol00] for de-
tails). Structural properties of operators often result in special presentations,
e.g., the scope of a radical expression is visualized by the length of its bar. Their
mathematical properties give rise to placement (e.g., associative arithmetic op-
erators are written infix), and their relative importance is expressed in terms of
binding strength conventions for brackets. Changes in notation have been influ-
ential in shaping the way we calculate and think about mathematical concepts,
and understanding mathematical notations is an essential part of any mathemat-
ics education. All of these make it difficult to determine the functional structure
of an expression from its presentation.

Content Markup formats for mathematics such as OpenMath [BCC+04] and
content MathML [ABC+03] concentrate on the functional structure of math-
ematical formulae, thus allowing mathematical software systems to exchange
mathematical objects. For communication with humans, these formats rely on a



“presentation process” (usually based on XSLT style sheets) that transforms the
content objects into the usual two-dimensional form used in mathematical books
and articles. Many such presentation processes have been proposed, and all have
their strengths and weaknesses. In this paper, we conceptualize the presentation
of mathematical formulae as consisting of two components: the two-dimensional
composition of visual sub-presentations to larger ones and the elision of for-
mula parts that can be deduced from context.

Most current presentation processes concentrate on the relatively well-under-
stood composition aspect and implement only rather simple bracket elision al-
gorithms. But the visual renderings of formulae in mathematical practice are
not simple direct compositions of the concepts involved: mathematicians gloss
over parts of the formulae, e.g., leaving out arguments, iff they are non-essential,
conventionalized or can be deduced from the context. Indeed this is part of what
makes mathematics so hard to read for beginners, but also what makes mathe-
matical language so efficient for the initiates. A common example is the use of
log(x) or even log x for log10(x) or similarly [[t]] for [[t]]ϕM, if there is only one
model M in the context and ϕ is the most salient variable assignment.

Another example are the bracket elision rules in arithmetical expressions:
ax+ y is actually (ax) + y, since multiplication “binds stronger” than addition.
Note that we would not consider the “invisible times” operation as another
elision, but as an alternative presentation.

In this situation we propose to encode the presentational characteristics of
symbols (for composition and elision) declaratively in notation definitions,
which are part of the representational infrastructure and consist of “prototypes”
(patterns that are matched against content representation trees) and “render-
ings” (that are used to construct the corresponding presentational trees). Note
that since we have reified the notations, we can now devise flexible management
process for notations. For example, we can capture the notation preferences of
authors, aggregators and readers and adapt documents to these. We propose
an elaborated mechanism to collect notations from various sources and specify
notation preferences. This brings the separation of function from form in math-
ematical objects and assertions in MKM formats to fruition on the document
level. This is especially pronounced in the context of dynamic presentation me-
dia (e.g., on the screen), we can now realize “active documents”, where we can
interact with a document directly, e.g., instantiating a formula with concrete
values or graphing a function to explore it or “living/evolving documents” which
monitor the change of knowledge about a topic and adapt to a user’s notation
preferences consistently.

Before we present our system, let us review the state of the art.
In [NW01a], Naylor and Watt present an approach based on meta style sheets

that utilizes a MathML-based markup of arbitrary notations in terms of their
content and presentation and, based on the manual selection of users, gener-
ates user-specific XSLT style sheets [Kay06] for the adaptation of documents.
Naylor and Watt [NW01b] introduce a one-dimensional context annotation of
content expression to intensionally select an appropriate notation specification.
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The authors claim that users also want to relegate the styling decision to some
defaulting mechanism and propose the following hierarchy of default notation
specification (from high to low): command line control, input documents de-
faults, meta stylesheets defaults, and content dictionary defaults.

In [MLUM05], Manzoor et al. emphasize the need for maintaining uniform
and appropriate notations in collaborative environments, in which various au-
thors contribute mathematical material. They address the problem by providing
authors with respective tools for editing notations as well as by developing a
framework for a consistent presentation of symbols. In particular, they extend
the approach of Naylor and Watt by an explicit language markup of the content
expression. Moreover, the authors propose the following prioritization of differ-
ent notation styles (from high to low): individual style, group, book, author or
collection, and system defaults.

In [KLR07] we have revised and improved the presentation specification of
OMDoc1.2. [Koh06] by allowing a static well-formedness, i.e., the well-formedness
of presentation specification can be verified when writing the presentations rather
than during compilation time. We also addressed the issue of flexible elision.
However, the approach does not facilitate to specify notations, which are not
local tree transformations of the semantic markup.

In [KMM07] we initiated the redefinition of documents towards a more dy-
namic and living view. We explicated the narrative and content layer and ex-
tended the document model by a third dimension, i.e., the presentation layer.
We proposed the extensional markup of the notation context of a document,
which facilitates users to explicitly select suitable notations on granular docu-
ment level. These extensional collection of notations can be inherited, extended,
reused, and shared among users.

For the system presented in this paper, we have re-engineered and extended
the latter two proposals.

2 Syntax of Notation Definitions

We will now present an abstract version of the presentation starting from the
observation that in content markup formalisms for mathematics formulae are
represented as “formula trees”. Concretely, we will concentrate on OpenMath
objects, the conceptual data model of OpenMath representations, since it is
sufficiently general, and work is currently under way to re-engineer content
MathML representations based on this model. Furthermore, we observe that
the target of the presentation process is also a tree expression: a layout tree
made of layout primitives and glyphs, e.g., a presentation MathML or LATEX
expression.

To specify notation definitions, we use the one given by the abstract grammar
from Fig. 1. Here |, [−], −∗, and −+ denote alternative, bracketing, and non-
empty and possibly empty repetition, respectively. The non-terminal symbol ω
is used for patterns ϕ that do not contain jokers. Throughout this paper, we will
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use the non-terminal symbols of the grammar as meta-variables for objects of
the respective syntactic class.

Notation declarations ntn ::= ϕ+ ` [(λ : ρ)p]+

Patterns ϕ ::=
Symbols σ(n, n, n)
Variables | υ(n)
Applications | @(ϕ[, ϕ]+)
Binders | β(ϕ, Υ, ϕ)
Attributions | α(ϕ, σ(n, n, n) 7→ ϕ)
Symbol/Variable/Object/List jokers | s | v | o | l(ϕ)

Variable contexts Υ ::= ϕ+

Match contexts M ::= [q 7→ X]∗

Matches X ::= ω∗|S∗|(X)
Empty match contexts µ ::= [q 7→ H]∗

Holes H ::= |“′′|(H)

Context annotation λ ::= (S = S)∗

Renderings ρ ::=
XML elements < S > ρ∗ < / >
XML attributes | S = ”ρ∗”
Texts | S
Symbol or variable names | q

Matched objects | qp

Matched lists | for(q, I, ρ∗){ρ∗}
Precedences p ::= −∞|I|∞
Names n, s, v, l, o ::= C+

Integers I ::= integer
Qualified joker names q ::= l/q|s|v|o|l
Strings S ::= C∗

Characters C ::= character except /

Fig. 1. The Grammar for Notation Definitions

Intuitions The intuitive meaning of a notation definition ntn = ϕ1, . . . , ϕr `
(λ1 : ρ1)p1 , . . . , (λs : ρs)ps is the following: If an object matches one of the pat-
terns ϕi, it is rendered by one of the renderings ρi. Which rendering is chosen,
depends on the active rendering context, which is matched against the context
annotations λi (see Sect. 5). Each context annotation is a key-value list des-
ignating the intended rendering context. The integer values pi give the output
precedences of the renderings.

The patterns ϕi are formed from a formal grammar for a subset of Open-
Math objects extended with named jokers. The jokers o and l(ϕ) correspond
to \(.\) and \(ϕ\)+ in Posix regular expression syntax – except that our pat-
terns are matched against the list of children of an OpenMath object instead of
against a list of characters. We need two special jokers s and v, which only match
OpenMath symbols and variables, respectively. The renderings ρi are formed
by a formal syntax for simplified XML extended with means to refer to the
jokers used in the patterns. When referring to object jokers, input precedences
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are given that are used, together with the output precedences, to determine the
placement of brackets.

Match contexts are used to store the result of matching a pattern against
an object. Due to list jokers, jokers may be nested; therefore, we use qualified
joker names in the match contexts (which are transparent to the user). Empty
match contexts are used to store the structure of a match context induced by a
pattern: They contain holes that are filled by matching the pattern against an
object.

Example We will use a multiple integral as an example that shows all aspects of
our approach in action.∫ b1

a1

. . .

∫ bn

an

sinx1 + x2 dxn . . . dx1.

Let int, iv, lam, plus, and sin abbreviate symbols for integration, closed real
intervals, lambda abstraction, addition, and sinus. We intend int, lam, and plus
to be flexary symbols, i.e., symbols that take an arbitrary finite number of argu-
ments. Furthermore, we assume symbols color and red from a content dictionary
for style attributions. We want to render into LATEX the OpenMath object

@
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),
β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red)

))
as \int_{a1}^{b1}. . . \int_{an}^{bn}\color{red}{\sin x1+x2}dxn. . . dx1

We can do that with the following notations:

@(int, ranges(@(iv, a, b)), β(lam, vars(x), f))
` ((format = latex) :

for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

α(a, color 7→ col) ` ((format = latex) : {\color{ col } a∞ })−∞

@(plus, args(arg)) ` ((format = latex) : for(args,+){arg})10

@(sin, arg) ` ((format = latex) : \sin arg)0

The first notation matches the application of the symbol int to a list of ranges
and a lambda abstraction binding a list of variables. The rendering iterates first
over the ranges rendering them as integral signs with bounds, then recurses into
the function body f, then iterates over the variables rendering them in reverse
order prefixed with d. The second notation is used when f recurses into the pre-
sentation of the function body α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red).
It matches an attribution of color, which is rendered using the Latex color
package. The third notation is used when a recurses into the attributed object
@(plus,@(sin, υ(x1)), υ(x2)). It matches any application of plus, and the ren-
dering iterates over all arguments placing the separator + in between. Finally,
sin is rendered in a straightforward way. We omit the notation that renders
variables by their name.

5



The output precedence −∞ of int makes sure that the integral as a whole
is never bracketed. And the input precedences ∞ make sure that the arguments
of int are never bracketed. Both are reasonable because the integral notation
provides its own fencing symbols, namely

∫
and d. The output precedences of

plus and sin are 10 and 0, which means that sin binds stronger; therefore, the
expression sinx is not bracketed either. However, an inexperienced user may
wish to display these brackets: Therefore, our rendering does not suppress them.
Rather, we annotate them with an elision level, which is computed as the dif-
ference of the two precedences. Dynamic output formats that can change their
appearance, such as XHTML with JavaScript, can use the elision level to de-
termine the visibility of symbols based on user-provided elision thresholds: the
higher its elision level, the less important a bracket.

Well-formed Notations A notation definition ϕ1, . . . , ϕr ` (λ1 : ρ1)p1 , . . . , (λs :
ρs)ps is well-formed if it satisfies the following conditions:
– All ϕi are well-formed patterns, and they induce the same empty match

contexts up to reordering.
– All ρi are well-formed renderings with respect to that empty match context.

Well-formed Patterns Every pattern ϕ generates an empty match context µ(ϕ)
as follows:
– For an object joker o occurring in ϕ but not within a list joker, µ(ϕ) contains
o 7→ .

– For a symbol or variable with name n occurring in ϕ but not within a list
joker, µ(ϕ) contains n 7→ “′′.

– For a list joker l(ϕ′) occurring in ϕ, µ(ϕ) contains
• l 7→ ( ), and
• l/n 7→ (H) for every n 7→ H in µ(ϕ′).

In an empty match context, a hole is a placeholder for an object, “′′ for a
string, ( ) for a list of objects, (( )) for a list of lists of objects, and so on. Thus,
symbol, variable, or object joker in ϕ produce a single named hole, and every
list joker and every joker within a list joker produces a named list of holes (H).
For example, the empty match context induced by the pattern in the notation
for int above is

ranges 7→ ( ), ranges/a 7→ ( ), ranges/b 7→ ( ), vars 7→ ( ), vars/x 7→ (“′′).

A pattern ϕ is well-formed if it satisfies the following conditions:
– There are no duplicate names in µ(ϕ).
– List jokers may not occur as direct children of binders or attributions.
– At most one list joker may occur as a child of the same application, and it

may not be the first child.
– At most one list joker may occur in the same variable context.

That means that list jokers may only be used for lists of arguments of an ap-
plication and for lists of variables in a binder. This restriction guarantees that
matching an OpenMath object against a pattern is possible in at most one way.
In particular, no backtracking is needed in the matching algorithm.
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Well-formed Renderings Assume an empty match context µ. We define well-
formed renderings with respect to µ as follows:

– < S > ρ1, . . . , ρr < / > is well-formed if all ρi are well-formed.
– S = ”ρ1, . . . , ρr” is well-formed if all ρi are well-formed and are of the form
S′ or n. Furthermore, S = ”ρ1, . . . , ρr” may only occur as a child of an XML
element rendering.

– S is well-formed.
– n is well-formed if n 7→ “′′ is in µ.
– op is well-formed if o 7→ is in µ.
– for(l, I, sep){body} is well-formed if l 7→ ( ) or l 7→ (“′′) is in µ, all renderings

in sep are well-formed with respect to µ, and all renderings in body are well-
formed with respect to µl. The step size I and the separator sep are optional,
and default to 1 and the empty string, respectively, if omitted.

Here µl is the empty match context arising from µ if every l/q 7→ (H) is replaced
with q 7→ H and every previously existing hole named q is removed. Replacing
l/q 7→ (H) means that jokers occurring within the list joker l are only accessible
within a corresponding rendering for(l, I, ρ∗){ρ∗}. And removing the previously
existing holes means that in @(o, l(o)), the inner object joker shadows the outer
one.

3 Semantics of Notation Definitions

The rendering algorithm takes as input a notation context Π (a list of notation
definitions, computed as described in Sect. 4), a rendering context Λ (a list of
context annotations, computed as described in Sect. 5), an OpenMath object ω,
and an input precedence p. If the algorithm is invoked from toplevel (as opposed
to a recursive call), p should be set to ∞ to suppress toplevel brackets.

It returns as output either text or an XML element. There are two output
types for the rendering algorithm: text and sequences of XML elements. We will
use O + O′ to denote the concatenation of two outputs O and O′. By that, we
mean a concatenation of sequences of XML elements or of strings if O and O′

have the same type. Otherwise, O +O′ is a sequence of XML elements treating
text as an XML text node. This operation is associative if we agree that consec-
utive text nodes are always merged. The algorithm inserts brackets if necessary.
And to give the user full control over the appearance of brackets, we obtain the
brackets by the rendering two symbols for left and right bracket from a special
fixed content dictionary. The algorithm consists of the following three steps.

1. ω is matched against the patterns in the notation definitions in Π until
a matching pattern ϕ is found. The notation definition in which ϕ occurs
induces a list (λ1 : ρ1)p1 , . . . , (λn : ρn)pn of context-annotations, renderings,
and output precedences.

2. The rendering context Λ is matched against the context annotations λi in
order. The pair (ρj , pj) with the best matching context-annotation λj is
selected (see Section 5.2 for details).
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3. The output is ρjM(ϕ,ω), the rendering of ρj in context M(ϕ, ω) as defined
below. Additionally, if pj > p, the output is enclosed in brackets. If pj ≤ p
and the brackets are rendered as HTML, the output is enclosed in brackets
as well, but elevel attributes with value p−pj are added to produce elidable
brackets.

Semantics of Patterns The semantics of patterns is that they are matched
against OpenMath objects. Naturally, every OpenMath object matches against
itself. Symbol, variable, and object jokers match in the obvious way. A list joker
l(ϕ) matches against a non-empty list of objects all matching ϕ.

Let ϕ be a pattern and ω a matching OpenMath object. We define a match
context M(ϕ, ω) as follows.

– For a symbol or variable joker with name n that matched against the sub-
object ω′ of ω, M(ϕ, ω) contains n 7→ S where S is the name of ω′.

– For an object joker o that matched against the subobject ω′ of ω, M(ϕ, ω)
contains o 7→ ω.

– If a list joker l(ϕ′) matched a list ω1, . . . , ωr, then M(ϕ, ω) contains
• l 7→ (ω1, . . . , ωr), and
• for every l/q in µ(ϕ): l/q 7→ (X1, . . . , Xr) where q 7→ Xi in M(ϕ′, ωi).

We omit the precise definition of what it means for a pattern to match against
an object. It is, in principle, well-known from regular expressions. Since no back-
tracking is needed, the computation of M(ϕ, ω) is straightforward. We denote
by M(q), the lookup of the match bound to q in a match context M .

Semantics of Renderings If ϕ matches against ω and the rendering ρ is well
formed with respect to µ(ϕ), the intuition of ρM(ϕ,ω) is that the joker references
in ρ are replaced according to M(ϕ, ω) =: M . Formally, ρM is defined as follows.

– < S > ρ1 . . . ρr < / > is rendered as an XML element with label S. The
attributes are those ρiM that are rendered as attributes. The children are
the concatenation of the remaining ρiM preserving their order.

– S = ”ρ1 . . . ρr” is rendered as an attribute with label S and value ρ1
M +

. . .+ ρn
M (which has type text due to the well-formedness).

– S is rendered as the text S.
– s and v are rendered as the text M(s) or M(v), respectively.
– op is rendered by applying the rendering algorithm recursively to M(o) and
p.

– for(l, I, ρ1 . . . ρr){ρ′1 . . . ρ′s} is rendered by the following algorithm:
1. Let sep := ρ1

M + . . .+ ρr
M .

2. Let t be the length of M(l).
3. For i = 1, . . . , t, let Ri := ρ′1

M l
i + . . .+ ρ′s

M l
i .

4. If I = 0, return nothing and stop. If I is negative, reverse the list R, and
invert the sign of I.

5. Return RI + sep+R2∗I . . . + sep+RT where T is the greatest multiple
of I smaller than t.
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Here the match context M l
i arises from M as follows

– replace l 7→ (X1 . . . Xt) with l 7→ Xi,
– for every l/q 7→ (X1 . . . Xt) in M : replace it with q 7→ Xi, and remove a

possible previously defined match for q.

4 Choosing Notation Definitions Extensionally

In the last sections we have seen how collections of notation definitions induce
rendering functions. Now we permit users to define the set Π of available nota-
tion definitions extensionally. In the following, we discuss the collection of nota-
tion definitions from various sources and the construction of Πω for a concrete
mathematical object ω.

4.1 Collecting Notation Definitions

The algorithm for the collection of notation definitions takes as input a tree-
structured document, e.g., an XML document, an object ω within this document,
and a totally ordered set SN of source names. Based on the proposed hierarchy
in [NW01b], we use the source names EC, F , Doc, CD, and SD. The user can
change their priorities by ordering them.

The collection algorithm consists of two steps: The collection of notation
definitions and their reorganization. In the first step the notation definitions are
collected from the input sources according to the order in SN . The respective
input sources are treated as follows:

– EC denotes the extensional context, which associate a list of notation
definitions or containers of notation definitions to every node of the input
document. The effective extensional context is computed according to the
position of ω in the input document (see a concrete example below). EC is
used by authors to reference their individual notation context.

– F denotes an external notation document from which notation defi-
nitions are collected. F can be used to overwrite the author’s extensional
context declarations.

– Doc denotes the input document. As an alternative to EC, Doc permits
authors to embed notation definitions into the input document.

– CD denotes the content dictionaries of the symbols occurring in ω. These
are searched in the order in which the symbols occur in ω. Content dictionar-
ies may include or reference default notation definitions for their symbols.

– SD denotes the system default notation document, which typically occurs
last in SN as a fallback if no other notation definitions are given.

In the second step the obtained notation context Π is reorganized: All occur-
rences of a pattern ϕ in notation definitions in Π are merged into a single
notation definition preserving the order of the (λ:ρ)p (see a concrete example
below).
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We base our further illustration on the input document in the figure above,
which includes three mathematical objects. For simplicity, we omit the cdbase
and cd attributes of symbols.

ω1 : @(σ(opair), υ(a), υ(b)) (a, b) ω2 : @(σ(power), σ(img), 2) i2 ω3 : σ(img) j

The dashed arrows in the figure represent extensional references: For example,
the ec attribute of the document root doc references the notation document
“myntn”, which is interpreted as a container of notation definitions.

We apply the algorithm above with the input object ω3 and SN = (EC,SD)
and receive Πω3 in return. For simplicity, we do not display context annotations
and precedences.

1. We collect all notation definitions yielding Πω3

1.1 We collect notation definitions from EC
1.1.1 We compute the effective extensional context based on the position of ω3 in
the input document: ec(ω3) = (ntnimg,myntn)
1.1.2 We collect all notation definition based on the references in ec(ω3):
Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair)
1.2. We collect notation definitions from SD and append them to Πω3

Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair, ntnopair, ntnimg, ntnpower)
1.3. The collected notation definition form the notation context Πω3

Πω3 = ( ϕ1 ` j, ϕ2 ` ab , ϕ1 ` i, ϕ3 ` [a, b], ϕ3 ` pair(a, b), ϕ1 ` imaginary,
ϕ2 ` power(a, b) )

2. We reorganize Πω3 yielding Π ′ω3

Π ′ω2 = ( ϕ1 ` j, i, imaginary;ϕ2 ` ab , power(a, b);ϕ3 ` [a, b], pair(a, b) )

To implement EC in arbitrary XML-based document formats, we propose
an ec attribute in a namespace for notation definitions, which may occur on any
element. The value of the ec attribute is a whitespace-separated list of URIs
of either notation definitions or any other document. The latter is interpreted
as a container, from which notation definitions are collected. The ec attribute
is empty by default. When computing the effective extensional context of an
element, the values of the ec attributes of itself and all parents are concatenated,
starting with the inner-most.
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4.2 Discussion of Collection Strategies

In [KMR08], we provide the specific algorithms for collecting notation definitions
from EC, F , Doc, CD and SD and illustrate the advantages and drawbacks of
basing the rendering on either one of the sources. We conclude with the following
findings:

1. Authors can write documents which only include content markup and do not
need to provide any notation definitions. The notation definitions are then
collected from CD and SD.

2. The external document F permits author to store their notation definitions
centrally, facilitating the maintenance of notational preferences. However,
authors may not specify alternative notations for the same symbol on gran-
ular document levels.

3. Authors may use the content dictionary defaults or overwrite them by pro-
viding F or Doc.

4. Authors may embed notation definitions inside their documents. However,
this causes redundancy inside the document and complicates the mainte-
nance of notation definitions.

5. Users can overwrite the specification inside the document with F . However,
that destroy the meaning of the text, since the granular notation contexts
of the authors is replaced by only one alternative declaration in F .

6. Collecting notation definitions from F or Doc has benefits and drawbacks.
Since users want to easily maintain and change notation definitions but also
use alternative notations on granular document levels, we provide EC. This
permits a more controlled and more granular specification of notations.

5 Choosing Renderings Intensionally

The extensional notation context declarations do not support authors to select
between alternative renderings inside one notation definition. Consequently, if
relying only on this mechanism, authors have to take extreme care about which
notation definition they reference or embed. Moreover, other users cannot change
the granular extensional declarations in EC without modifying the input doc-
ument. They can only overwrite the author’s granular specifications with their
individual styles F , which may reduce the understandability of the document.

Consequently, we need a more intelligent, context-sensitive selection of ren-
derings, which lets users guide the selection of alternative renderings. We use
an intensional rendering context Λ, which is matched against the context an-
notations in the notation definitions. In the following, we discuss the collection
of contextual information from various sources and the construction of Λω for a
concrete mathematical object ω.

5.1 Collecting Contextual Information

We represent contextual information by contextual key-value pairs, denoted by
(di = vi). The key represents a context dimension, such as language, level of
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expertise, area of application, or individual preference. The value represents a
context value for a specific context dimension. The algorithm for the context-
sensitive selection takes as input an object ω, a list L of elements of the form
(λ : ρ)p, and a totally ordered set SC of source names. We allow the names GC,
CCF , IC, and MD. The algorithm returns a pair (ρ, p). The algorithm consists
of two steps: the collection of contextual information Λω and the selection of a
rendering.

1. Λω is computed by processing the input sources in the order given by SC .
The respective sources are treated as follows:
– IC denotes the intensional context, which associate a list of contextual

key-value pairs (di = vi) to any node of the input document. These
express the author’s intensional context. For the implementation in XML
formats, we use an ic attribute similar to the ec attribute above, i.e., the
effective intensional context depends on the position of ω in the input
document (see a concrete example below).

– GC denotes the global context which provides contextual information
during rendering time and overwrites the author’s intensional context
declarations. The respective (di = vi) can be collected from a user model
or are explicitly entered. GC typically occurs first in SC .

– CCF denotes the cascading context files, which permit the contex-
tualization analogous to cascading stylesheets.

– MD denotes metadata, which typically occurs last in SC .
2. The rendering context Λω is matched against the context annotations in L.

We select the pair (ρ, p) whose corresponding context annotation satisfies
the intensional declaration best (see [KMR08] for more details).

We continue our illustration on the given input document. The dashed arrows
represent extensional references, the dashed-dotted arrows represent intensional
references, i.e., implicit relations between the ic attributes of the input docu-
ment and the context-annotations in the notation document. A global context
is declared, which specifies the language and course dimension of the document.
We apply the algorithm above with the input object ω3, SC = (GC, IC), and
a list of context annotations and rendering pairs based on the formerly created
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notation context Πω3 . For convenience, we do not display the system’s default
notation document and the precedences.

1. We compute the intensional rendering context
1.1. We collect contextual information from GC
Λω3 = (lang = en, course = GenCS)
1.2. We collect contextual information from IC an append them to Λω3

Λω3 = (lang = en, course = GenCS, area = physics, area = math)

2. We match the rendering context against the context annotations of the input list
L and return the rendering with the best matching context annotation:
L = [ (λ0 = j), (λ1 = i), (λ2 = imaginary) ]
λ0 = (area = physics), λ1 = (area = maths), and λ2 = ∅

For simplicity, we compute the similarity between Λω3 and λi based on the
number of similar (di = vi): λ0 includes (area = physics). λ1 includes (area =
math). λ2 is empty. λ0 and λ1 both satisfy one (di = vi) of Λω3 . However, since
(λ0 = ρ0) occurs first in Πω3 , the algorithm returns ρ0.

5.2 Discussion of Context-Sensitive Selection Strategies

In [KMR08], we illustrate and evaluate the collection of contextual information
from GC, CCF , IC and MD in detail. We conclude with the following findings:

1. The declaration of a global context provides a more intelligent intensional
selection between alternative (λ : ρ)p triples inside one notation definition:
The globally defined (di = vi) are matched against the context-annotations
λ to select an appropriate rendering ρ. However, the approach does not let
users specify intensional contexts on granular levels.

2. Considering metadata is a more granular approach than the global context
declaration. However, metadata may not be associated to any node in the
input document and cannot be overwritten without modifying the input
document. Moreover, the available context dimension and values are limited
by the respective metadata format.

3. The intensional context supports a granular selection of renderings by asso-
ciating an intensional context to any node of the input document. However,
the intensional references cannot be overwritten on granular document levels.

4. Cascading Context Files permit a granular overwriting of contexts.

6 Conclusion & Outlook

We introduced a representational infrastructure for notations in living mathe-
matical documents. We provided a flexible declarative specification language for
notation definitions and gave a rendering algorithm. We described how authors
and users can extensionally extend the set of available notation definitions on
granular document levels, and how they can guide the notation selection via in-
tensional context declarations. Moreover, we discussed different approaches for
collecting notation definitions and contextual information.
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To substantiate our approach, we have developed several prototypical imple-
mentations of all aspects of the rendering pipeline:

The Java toolkit mmlkit [MMK07] implements the conversion of OpenMath
and Content-MathML expressions to Presentation-MathML. It supports
the collection of notation definitions from various sources, constructs render-
ing contexts based on contextual annotations of the rendered object, identi-
fies proper renderings for the conversion.

The semantic wiki SWiM [Lan08] supports the collaborative browsing and
editing of notation definitions in OpenMath content dictionaries.

The panta rhei [Mül07] reader integrates mmlkit to present mathematical doc-
uments, provides facilities to categorize and describe notations, and uses
these context annotations to adapt documents.

We will invest further work into our implementations as well as the evaluation
of our approach. In particular, we want to address the following challenges:

Authoring Dilemma Context annotations of the input and notation docu-
ments are tedious. Editing and selection of notations should not require well
grounded programming skills or knowledge of a specific document format.
We need to provide implementations that facilitate the editing of notation
definitions as well as the exchange of contextual information.

Write Protection In some cases, users should be prevented to overwrite the
author’s declaration. On the contrary, static notations reduce the flexibility
and adaptability of a document (see [KMR08] for more details).

Consistency The flexible adaptation of notations can destroy the meaning of
documents, in particular, if we use the same notation to denote different
mathematical concepts.

Elision We will adapt the elision of arbitrary parts of formulas from [KLR07].
This will be straightforward.

Notation Management Users want to reuse, adapt, extend, and categorize
notation definitions (see [KMR08] for more details).

Acknowledgment Our special thanks go to Normen Müller for the initial
implementation of the presentation pipeline. We would also like to thank Alberto
Gonzáles Palomo and Paul Libbrecht for the discussions on their work.
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