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Abstract. With the globalisation in education, bridging cultural dif-
ferences by making course material more accessible and adaptable to
individual user needs becomes an important goal. In this paper we at-
tack this goal for the field of mathematics where knowledge is abstract,
highly structured, and extraordinary interlinked. Modern representation
formats like our OMDoc format allow us to capture, model, relate, and
represent mathematical learning objects and thus make them context-
aware and machine-adaptable to the respective learning contexts. But to
make mathematical knowledge accessible to learners of diverse cultural
backgrounds we also need to model mathematical practice.
In this paper, we show that many practices of mathematical communities
can already be modeled in OMDoc and outline extensions to support
further ones. We have implemented a collection of services that allow
applications to interpret and manage OMDoc and its practice repre-
sentations. These services are integrated into our prototype eLearning
platform to demonstrate how systems can improve the accessibility of
mathematical eLearning materials.

1 Introduction

With the ever-increasing globalisation
of higher education, learning insti-
tutions have to cope with cultur-
ally induced differences in prerequi-
site knowledge and learning practices.
This is especially pronounced at Ja-
cobs University Bremen with an in-
ternational student body: 1100 stu-
dents from 88 countries on April 8th,
2008 [31].

Surprisingly, this also affects subjects like Mathematics and Computer Sci-
ence that are often considered culture-independent. Even though most of our
students are well prepared and possess good mathematical knowledge, a needs
assessment study [1] shows mathematical discrepancies. Students of our one-
year, introductory course on Computer Science (GenCS) reported that they had
? This work was supported by JEM-Thematic-Network ECP-038208.



problems to get acquainted with the professor’s notation systems, some had the
feeling that the pace of the course was inappropriate and determined by the best
students, some felt embarrassed to ask questions, while others did not face any
problems and were able to balance out based on their previous education. Most
students rate these discrepancies as problematic and believe that they can be
associated with different educational and cultural backgrounds. In particular Ro-
manian and Bulgarian students are very confident with their mathematical skills.
Indian students are mostly well-educated in programming languages. Other na-
tionalities struggle with the course. We assume that our students are capable of
passing the course, but eventually give up when they are not able to map their
previous mathematical background and practices to our course. In this situa-
tion, we want to augment lectures with online material that can be adapted to
individual user needs.

We claim that the theory of communities of practice [17] can help us under-
stand different mathematical practices and backgrounds and to eventually coun-
teract pre-existing differences. According to Lave and Wenger [17], communities
of practice (CoPs) are groups of people who share an interest in a particular do-
main — in our case the interest in the GenCS course. By interacting and collab-
orating around problems, solutions, and insights they develop shared practices,
i.e. a common repertoire of resources consisting of experiences, stories, tools, and
ways of addressing recurring problems. Even though mathematical practitioners
seem to form a homogeneous, unified community and share the same practices
all over the world, they actually form various sub-communities that differ in their
preferred notations, basic mathematical assumptions, and motivating examples.
We can observe these sub-communities among our GenCS students and see that
exactly these communities are valuable for deepening knowledge and learning.

To allow our students to access mathematical knowledge efficiently in the
online materials mentioned above, we explicate their knowledge structure and
the mathematical practices and use these to support the students in interacting
with the course materials.

For determining the knowledge structure we make use of the fact that math-
ematical knowledge is abstract , highly structured , and extraordinary interlinked .
This allows us to more easily capture, model, relate, and represent mathematical
learning objects. For the practices we use that mathematical communities often
interact via their mathematical knowledge artifacts, such as theories or learn-
ing objects. We claim that their practices are inscribed into these artifacts. For
example, mathematical authors choose notations, make assumptions, build on
different foundations as well as results, and choose typical examples to illustrate
their mathematical concepts [12].

Concretely we show in this paper, how to use our Open Mathematical Doc-
uments (OMDoc [14]) to represent mathematical learning objects as well as
practices of mathematical communities. We illustrate which aspects of mathe-
matical practices OMDoc supports and outline an extension of the format to
further practices. We have implemented a collection of enabling technologies,
which allow applications to interpret and manage OMDoc and its practice rep-
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resentations. Our enabling technologies are integrated into our prototype eLearn-
ing platform [24] to demonstrate how systems can improve the accessibility of
mathematical eLearning materials.

2 Knowledge Representation for Mathematics

Mathematical Objects are what we talk and write about when we do mathe-
matics: Rather simple objects like numbers, functions, triangles, matrices, and
more complex ones such as vector spaces and infinite series. In order to pro-
vide automated services such as search or computation, we need to represent
these objects in a machine-processable format, such as MathML [32] or Open-
Math [27]. The former is a W3C recommendation for high-quality presentation
of mathematical formulae on the Web, whereas the latter concentrates on the
meaning of objects1.

OpenMath Representation MathML Representation Presentation

<om:OMOBJ>
<om:OMA>

<om:OMS cd=”combinat1”
name=”binomial” />

<om:OMV name=”n” />
<om:OMV name=”k” />

</om:OMA>
</om:OMOBJ>

<m:mrow>
<m:mo>(</m:mo>
<m:mfrac linethickness=”0”>

<m:mi>n</m:mi>
<m:mi>k</m:mi>

</m:mfrac>
<m:mo>)</m:mo>

</m:mrow>

(
n
k

)

Fig. 1. OpenMath and MathML representation of the binomial coefficient.

Figure 1 provides the OpenMath and MathML representations of the num-
ber

(
n
k

)
= n!

k!(n−k)! of k-element subsets of a n-element set. The OMS element rep-
resents the “binomial coefficient” function, which (via cd and name attributes)
points to a definition in a content dictionary (CD) [26]. CDs specify com-
monly agreed definitions of basic mathematical objects and allow machines to
distinguish the meaning of included mathematical objects. Consequently, Open-
Math expressions can be used by information retrieval or computation services
while the MathML expression is used for display. A MathML-aware browsers
presents the middle expression in Figure 1 as

(
n
k

)
.

The OMDoc format serves as semantics-oriented representation format and
ontology language for mathematical knowledge. The format extends OpenMath
and MathML with markup primitives for the structure and interrelations of
mathematical objects expressed as mathematical statements, i.e. definitions,
theorems, and proofs. We have already seen above that content dictionaries serve
as an explicitly represented context for mathematical symbols, formulae and
thus learning objects. The OMDoc format allows to represent CDs as OMDoc
documents containing mathematical statements, but extends this functionality
with a very expressive infrastructure for inter-CD relations that facilitate concept
1 In fact MathML has a sub-language that is equivalent to OpenMath, but we con-

centrate on the presentational functionality of MathML for simplicity.
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inheritance, parametric reuse, and multiple views on mathematical content. We
claim that this theory level makes OMDoc an ideal representation format
for mathematical learning objects (MLO), i.e. reusable, granular, highly
structured, and semantically marked up fragments of varying size.

The OMDoc approach negates the intuition of existing eLearning ap-
proaches [4, 5, 18] that learning objects (LO) should be context independent.
We believe that this aim is not only impossible to achieve, but also misleading.
Authors are biased when creating LOs and always include subjective, context-
dependent parts influenced by their didactic approaches or personal views. In
mathematics, LOs also include the authors’ individual and context-dependent
practices such as their proving strategy, the choice of notations, or choice of
typical examples. We believe that the context and practices of LOs should be
represented explicitly so that machines can adapt them to the reader or learning
goal. We call LOs with explicitly represented context-dependencies and prac-
tices “context-aware” to contrast them to the elusive “context-independent”
ones. Thus, context-aware LOs allow to produce more accessible learning mate-
rials that are targeted to the individual needs and preference of the learner. For
example, references to regional events or cultural aspects can motivate learners
and allow them to more easily map new knowledge to prior experiences.

OMDoc allows to represent context-aware MLOs since it preserves the log-
ical , narrative, and social contexts of MLOs and provides an infrastructure
that interprets contextual information allowing for sophisticated semantic ser-
vices [13]. For example, OMDoc supports a user-specific and context-aware se-
lection and sequencing of LOs as well as their adaptive presentation that other
non-semantic eLearning approaches can not offer [22].

3 Representing Practices in OMDoc

In the following, we detail how some of the practices above can be encoded in
the OMDoc format. In this sense our paper can be seen as an instantiation of
our earlier [13], where we state requirements for semantic representation formats
for educational materials. We concentrate on three practices on different levels
of the OMDoc format. The presentation of mathematical results (document
level), the structuring and contextualisation of mathematical knowledge (theory
level), and the choice of mathematical notations (object level). The approach
exemplified with these examples can be applied to any practice. We analyse the
mathematical objects affected by the practice and try to represent a functional
core that is independent of the practice. Then we try to reify — i.e. turn into
represented objects — the other factors or parameters in the practice in question.
For instance for notation practices, the functional core is specified in form of the
OpenMath and MathML formats, which define the representation of mathe-
matical formulae. The practice factors are reified by representing the choice of
notation for a semantic concepts and the parameters that can guide this choice
as processable objects, see Section 3.2.
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3.1 Representing Mathematical Documents

On the document level,
OMDoc separates the
narrative structure of
mathematical documents
from the content struc-
ture and thus makes it
adaptable. The figure
to the right2 presents a
technical report marked
up using OMDoc’s doc-
ument ontology, which
defines narrative con-
cepts, such as section or document, content concepts, such example or definition,
and their interrelation, e.g an example illustrates a definition and a document
is a composition of sections. The narrative relations allow us to model the
didactic practice of authors, i.e. their way of sequencing mathematical content.
The content relations are the basis for automatic generations of these sequences.
For example, we can compute a guided tour that summarises all mathematical
preliminaries for a given concept (see [22] for details on the automatic selection
and sequencing of documents).

3.2 Representing Notation Practices in OMDoc

<omdoc xmlns=”http://omdoc.org/ns” ...>

<notation> see Figure 3 </notation>

<theory xml:id=”MyTheory”>
<imports from=”http://omdoc.org/combinat1.omdoc#binomial”/>
<omtext xml:id=”id2”>

<CMP>
The binomial coefficients is the number of ways of choosing m objects from a
collection of n distinct objects without regard to the order.

We denote it by see Figure 1

</CMP>
</omtext>

</theory>
</omdoc> Fig. 2. OMDoc representation of an example document.

Figure 2 provides an example of a document represented in OMDoc. The
OMDoc representation includes a theory element, which embeds a mathemati-
cal object represented in OpenMath. The import element specifies the required
prior mathematical knowledge and is used analogously to operators in program-
ming languages, which import required libraries and classes. In OMDoc, the
import elements include all symbols from other theories that are used within
the current theory, but have been defined and introduced in the imported the-
ories. In the example, the import element of the theory MyTheory includes the
symbol binomial, which is defined in the theory combinat1. Please note that
2 The figure was borrowed from [25]
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mathematical objects in OpenMath format can not be presented as Open-
Math represents the meaning, but can not be used for display. These objects
have to be converted to MathML. Consequently, we need to automatically pro-
cess the author’s notation practices, i.e. we need a mapping from OpenMath
to a respective MathML representation.

In [15] we presented the extension of OMDoc towards the representation of
mathematical notation practices to provide a flexible and context-aware conver-
sion from OpenMath to MathML. We reified notation preferences of scientists
into artifacts, that is notation specifications, which are applied onto the meaning
of mathematical objects (represented in OpenMath) to generate their presen-
tation (represented in MathML).

Figure 3 presents the OMDoc representation of a notation specification. The
prototype pattern matches the OpenMath expression of the binomial coeffi-
cient in Figure 2. The rendering elements are applied to generate a concrete
presentation for the symbol. The context attribute of the rendering element
associates specific context parameters. In the example, the nationality of the
respective notations are added. This allows to distinguish the German, Russian,
and French notation of the binomial coefficient. Analogously, further context
parameters such as the expertise level (novice, intermediate, expert) or area of
application (mathematics, physics) can be added.

<notation xmlns:m=”http://www.w3.org/1998/Math/MathML”
xmlns:om=”http://www.openmath.org/OpenMath”>

<prototype>
<om:OMA>

<om:OMS cd=”combinat1”
name=”binomial” />

<expr name=”arg1”/>
<expr name=”arg2”/>

</om:OMA>
</prototype>
<rendering context=”language:Russian,ru”>

<m:msubsup>
<m:mi>C</m:mi>
<render name=”arg1”/>
<render name=”arg2”/>
</m:msubsup>

</rendering>

<rendering context=”language:German,de”>
<m:mrow>

<m:mo>(</m:mo>
<m:mfrac linethickness=”0”>

<render name=”arg1”/>
<render name=”arg2”/>

</m:mfrac>
<m:mo>)</m:mo>

</m:mrow>
</rendering>
<rendering context=”language:French,fr”>

<m:msubsup>
<m:mi>C</m:mi>
<render name=”arg2”/>
<render name=”arg1”/>

</m:msubsup>
</rendering>

</notation>

Fig. 3. An Example of a notation practice represented in OMDoc.

In order to select the appropriate presentation for a symbol, we proposed a
context-aware conversion algorithm in [15]. First we collect all notation specifi-
cation for a mathematical object, then we collect the user’s context parameters
for the conversion, and finally we select an appropriate rendering element which
best fits to the current context and apply it to generate a presentation for the
mathematical object. To provide a flexible and context-aware conversion algo-
rithm, we provide various options to collect notation specifications as well as
concrete context parameters.
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Given the notation specification in Figure 3 and a concrete context param-
eter, the mathematical object in the OMDoc document in Figure 2 can be
presented differently. For example, depending on the nationality selected by the
user, the binomial coefficient is presented with its German (

(
n
k

)
), Russian (Cn

k ),
or French notation (Ck

n).

3.3 Representing Structure and Context of Math. Knowledge

To structure collections of learning objects and provide them with context OM-
Doc groups them into theories and links them via theory morphisms. This
mechanism reifies a practice that long been relatively overt in mathematical
documents, e.g. the Bourbaki development of mathematics that starts with set
theory [3] and takes the mathematical practice of stating results with minimal
preconditions to the extreme. OMDoc provides concrete markup for theory ob-
jects and extends the theoretically motivated accounts of inheritance and mod-
ularity in programming languages and mathematics to cover informal (but rig-
orous) mathematical practice (see [29] for the most recent theory, which will be
incorporated into the upcoming version of OMDoc). Intuitively, a theory mor-
phism is a mapping between theories that allows to “view” the source theory in
terms of the target theory, if the mapping conserves truth. In the simplest case,
theory morphisms model inheritance — the source theory can be viewed as an
included part of the target theory — and thus allow to model the mathematical
practice of modular/object-oriented development of knowledge in mathematics.
For instance Figure 4 shows the inheritance graph of our GenCS course, and is
used by students and the instructor for navigation and overview.
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Fig. 4. The inheritance Graph of the GenCS course

But theory morphisms can also be used to model intra-mathematical dif-
ferences in practices, e.g. differing choices of basic concepts. To gain and in-
tuition, let consider an elementary example, the choice measuring temperature
with the Kelvin, Celsius, and Fahrenheit scales. This example is suitable, since
these scales make different defining assumptions — we model these as OMDoc
axiom elements. For instance the Fahrenheit scale defines zero degrees to be the
temperature of the coldest winter night Mr. Daniel Gabriel Fahrenheit ever expe-
rienced whereas the Celsius scale puts zero degrees a the freezing point of water,
while the Kelvin scale puts it at the at hypothetical point, where all atoms cease
motion (cf. Figure 5). The crucial observation is that (after suitable rescaling)
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all arrive at compatible consequences — which we model as OMDoc theorems.
This allows us to establish the rescaling mappings as theory morphisms, since
they are truth-preserving.

Theory Temp. in Kelvin Temp. in Celsius Temp. in Fahrenheit

Signature ◦K ◦C ◦F

Axiom: absolute zero at 0◦K Water freezes at 0◦C cold winter night:
0◦F

Axiom: δ(1◦K) = δ(1◦C) Water boils at 100◦C domestic pig: 100◦F

Theorem: Water freezes at 271.3◦K domestic pig: 38◦C Water boils at 170◦C

Theorem: cold winter night: 240◦F absolute zero: −271.3◦C abs. zero: −460◦F

Theory morphisms: ◦C
+271.3−→

◦
K, ◦C

−32/2−→
◦
F , and ◦F

+240/2−→
◦
F

Fig. 5. Three equivalent theories of temperatures

The important implication for eLearning is that the elaborate theory struc-
ture that was theoretically motivated originally can be utilised for adaptation
and bridging of context differences. We can automatically re-contextualise learn-
ing objects. For instance we can move a LO from a Fahrenheit context to a
Celsius context by translating it via the appropriate mapping above. This trans-
lation is safe, since we have established it to be a theory morphism earlier. Note
that the re-contextualisation discussed here significantly surpasses the notation
adaption discussed above as it is at the conceptual and content level. Another
example of a service based on theory morphisms is to index all translations and
thus make the virtual cloud of possible translations available to a formula search
engine like our MathWebSearch service [16]. Our experiments show that even
for an introductory course like GenCS supports about three dozen non-trivial
theory views, while the theory views from subsequent course into GenCS go in
the hundreds, since these courses are given by other instructors.

4 Implementation & Case Study

We propose an interactive environment, hence-
forth referred to as active document environ-
ment [21], which supports personalised inter-
action with mathematical content by adapting
documents according to the user’s practices and
preferences. The figure to the right presents the
constituents of active mathematical documents.
The horizontal layers denote the preliminaries
for the services in the vertical columns.

Document markup and ontologies provide a machine-processable representa-
tion of documents and allow us to distinguish the content, structure, and form
of documents. In order to implement configurable documents, we extend the se-
mantic representation layer with practice reifications, such as rules that express
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an authors choice of content, his way of sequencing content, or preferred presen-
tation. For example, notation definitions are rules that define the rendering of
mathematical concepts depending on the author’s context. In order to provide
automatic adaptation of documents, we need to model the user’s behaviour, e.g.
by applying user modeling techniques. For example, in [23] we extended our con-
figuration of mathematical notation towards an adaptive framework that applies
user modeling techniques to automatically adapt notations for the user.

To demonstrate our approach, we are implementing a proof-of-concept
eLearning platform [24]. The implementation of the system is ongoing. In the
following, we describe our envisioned prototype.

The sysem integrates the Java library JOMDoc [10] to convert lecture ma-
terial in OMDoc+OpenMath into XHTML+MathML. During the import of
OMDoc materials, the lecturer can specify his notation preferences. In the fig-
ure below, the German notation has been chosen. By integrating JOBAD [7] we
can allow users to adapt the presented material on-the-fly, i.e. users can change
notations and indicate their preferences while reading the material.

However, dynamic adaptation of material is not always in the intention of the
lecturer, as he might wish to introduce specific notations and allow students to
learn new ones. Consequently, systems should not simply overwrite the lecturer’s
notations, but rather add a hint for the user if his notation background differs
with the presented symbols; see Figure 6 for two variants of the material above.

Fig. 6. User-specific Adaptation of Notations

5 Related Work

The ActiveMath system [19] integrates a framework for automatic course gen-
eration [30] based on hierarchical network planning, which produces personalised
courses that adapt to the user’s learning goals and competencies. Course are
generated for different scenarios, such as the introduction of a learner to a previ-
ously unknown concept, the discovery of concepts, or the rehearsal of materials.
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Content is represented in OMDoc, but the ActiveMath approach does not
consider the full power of the format. Instead, the course generation is based
on the annotation of didactic relations and properties. Practice-oriented adap-
tations along mathematical sound relations are not yet supported. However, the
ActiveMath system offers a sophistiacted user modeling approach [20], which
implements the third service layer of active documents, i.e. the system-driven
adaptation of documents.

The educational knowledge repository ConneXions [2] is based on a cor-
pus of semantic artifacts represented in CNXML [9], a lightweight XML markup
language for educational content. CNXML embeds MathML as well as Open-
Math for the representation of mathematical objects. It provides markup for the
document level, but lacks markup of theories and theory dependencies. However,
ConneXions provides “lenses” [11] that allow users to express their approval or
rejection. These lenses are used to select appropriate content for a user according
to his membership to a specific mathematical community.

[8] specifies strategies for interactive exercises. Strategies are procedures or
procedural skills that help solving exercises and thus reflect mathematical prac-
tices, similar to the problem solving guidelines presented by Polyá [28]. Based
on strategy specifications, [8] implement a web service, which is used by sev-
eral mathematical eLearning applications allowing them to consider alternative
strategies to provide more adaptive feedback and guidance.

The MathDox system [6] presents mathematical course material in form
of interactive mathematical web pages. It integrates the MathDox Player and
the previously mentioned exercise service [8] to implement accessible and living
eLearning documents. However, although its XML-based document format em-
beds mathematical objects in OpenMath and MathML and provides a basic
markup of the structure of documents, it is less suited for representing mathe-
matical structures and practices as it is lacking OMDoc’s theoretic foundations.

6 Conclusion & Outlook

In this paper we discussed how a modern, content-oriented document format
(OMDoc) can be used to represent context-aware mathematical learning ob-
jects as well as practices of mathematical communities. We have shown how the
context awareness of MLO representations together reified practices can be used
to re-contextualise MLOs and adapt them to differing cultural backgrounds.
The implementation of our prototype is work-in-progress and will be used to
demonstrate how systems can improve the accessibility of eLearning materials.

Future work will address the reification of further practices in OMDoc,
e.g. to support the automatic selection of typical examples and exercises for a
given set of theories and user-specific context parameters. Moreover, we want
to extend OMDoc to represent the social context of mathematical knowledge,
i.e. information and relations that are capture during the user’s interaction with
mathematical knowledge such as tags, annotations, or discussions.
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