

from other ontologies. OMDoc tools can identify missing imports.

Imports can carry morphisms.

Classes, properties, and individuals are declared as symbols, having a type.

Informal sections and descriptions can be included right into the ontology document.

Formal and informal contant of a statement

Theory (FOAF)

Imports: OWL, First Order Logic WordNet, Dublin Core (*dc:creator* \mapsto *maker*), ...

Classes

Symbol (Project): Project: owl:Class

The Project class represents the Projects' of things that are 'projects'. These may be formal or informal, collective or individual. It is often use-

ful to indicate the *menopage* of a *Project*. **Axiom:** *Project* \sqsubseteq *wordnet:Project* We reuse and specialize WordNet's project class.

Axiom: $Project \square Document = \bot$

A Project is not a Document.

	We have formalized
	RDF, RDFS, and OWL
	(symbols and partial
	semantics) as theories.
	From a single OMDoc
	source, we can obtain:
	• various formal repre-
	sentations
,	• various human-
,	readable presentations

Article Discuss	Metadata	Context	Edit	Annota	ate History						
litle:	:	StudentExam	nple		🛞 🔮 Insert / edit embedded form	ula with Sentido - Mozilla Firefox					0
	_ 1				intersectionOf(OMS("foaf","Perso	n"), restriction(QMath:en 🔄			OWL-DL		
B Z <u>U</u> AB€ ∰ ≦		≡ ■ E) ⊴" ª₀ ∋+ '			foaf:Person ⊓ ≥ 1un	versity:enrolledIn	⊤ ≤ n	_	$X \sqcup Y$ = nP	$X \sqcap Y$ $\ge nP$	
ОМDос 💆 - 🧳 🕅 🖓 🛷				ດ 🛷 🍐				Logic	and rela	itions	
Document Structure	I						т	xvy	x⊻y	$\exists x. (x=1)$	
Theories	I	•					1	х∧у	$\neg x$	$\forall x.(x=1)$	
Formal Statements	I	•					$x \Leftrightarrow y$	$x \Rightarrow y$			
Informal Statements	(omtext)	•					x = y	x < y	x > y	$x \approx y$	
Text	ı	•					x ≠ y	$x \leq y$	$x \ge y$		
Mathematical Objects Formal Mathematica			cal Prop	-op				Functions			
Proofs Assumption (as part of		art of FM	Done			7	* <	> zotero			
		Conclusi	on (as par	t of FMP							
defini	tion	mark for	rmula as C	мовј		for=#student.	sym			=	
(СМР										
A student is a pe	erson wh	o is enroll	ed at l	east o	nce.						

tent of a statement can
be given in parallel and
Seross-linked.

Custom symbol notations: • $owl:disjointWith(A, B) \vdash$ $A \sqcap B = \bot$ • foaf:member(g, m) \vdash $g \ni_{member} m.$

We use compound property types to declare range and domain.

A lot about inverse properties can be inferred from the original property and the inverseness dec-

Symbol (made):

made: $owl:ObjectProperty(Agent \rightarrow owl:Thing)$ The made property relates an *Agent* to something *made* by it.

http://kwarc.info/projects/krextor/

Symbol (maker): *maker* (no declared type; see below) **Axiom:** $made = maker^{-}$

Type Assertion: maker: $owl:ObjectProperty(owl:Thing \rightarrow Agent)$ **Proof:** We prove this using the declared type of *foaf:made*, using axiom ..., and the OWL direct semantics of *mowl:inverseOf*.

Lemma: *maker* = *made*⁻

Proof:

1. We know that *made* = *maker*⁻ 2. Interpreted using the OWL semantics, this means that $made^{L} =$ $(maker^{-})^{\mathcal{I}} = (maker^{\mathcal{I}})^{-}$

3. Now we apply the inverse on both sides, eliminate double inverses, and obtain $(made^{\mathcal{I}})^{-} = ((maker^{\mathcal{I}})^{-})^{-} = maker^{\mathcal{I}}$ 4. This is the interpretation of *maker* = *made*⁻, which we had to prove. **Axiom:** $\forall t, m, n. maker(t, m) \land name(m, n) \Rightarrow dc:creator(m, n)$ **Symbol (membershipClass):** The *membershipClass* property relates a Group to an RDF class representing a sub-class of Agent whose instances are all the agents that are a \mathbb{F} member of the \mathbb{F} Group. Axiom: $\forall m, g, C. g \ni_{member} m \land membershipClass(g, C) \Rightarrow m :_{rdf:type} C$ Links http://www.omdoc.org http://kwarc.info/projects/swim/ http://jomdoc.omdoc.org/wiki/JOBAD

tersectionOf(OMS("foaf", "Person"), restriction(OMS("university", "enrolledIn"), minCardinality(1)))) 💾 Save Page 💢 Cancel Editor of the SWiM semantic wiki OMDoc source **Krextor** → OWL └→ FOL/HOL XHTML+MathML +RDFa X+M+R(alternative notation) **B**JOBAD X+M+R(interactive)

laration, using the OWL axioms.

Proofs can be given, but are optional.

We can add axioms that refine imported concepts.

By importing other logics, we can exceed OWL's expressivity.

Related work: • CASL/Hets (modular, heterogeneous, no documentation) • XHTML+RDFa (emerging for ontologies, we also generate it)